Results of Geomagnetic Observations
Belsk, Hel, Hornsund,
2008

Jan REDA, Mariusz NESKA and Stanisław WÓJCIK

Institute of Geophysics, Polish Academy of Sciences
ul. Księcia Janusza 64, 01-452 Warszawa, Poland

1. INTRODUCTION
This publication contains basic information on geomagnetic observations carried out in 2008 in three Polish geophysical observatories: Belsk (BEL), Hel (HLP), and Hornsund (HRN). All these observatories belong to the Institute of Geophysics, Polish Academy of Sciences. Observatories Belsk and Hel are located on the territory of Poland, while Hornsund is in Spitsbergen archipelago, governed by Norway.

In 2008, like in the previous years, the Belsk, Hel and Hornsund observatories have kept a close collaboration with the world network of geomagnetic observatories INTERMAGNET. The Belsk Observatory joined INTERMAGNET in 1992, Hel in 1999, and Hornsund in 2002.

2. DESCRIPTION OF OBSERVATORIES
The location of observatories is shown in Fig. 1 and Table 1. The geomagnetic coordinates in Table 1 were calculated in relation to the geomagnetic pole located at 83.2°N, 118.3°W on the basis of model IGRF-10 from epoch 2005.

The methodology of geomagnetic observations in all the three observatories was very similar, based on the “Guide for Magnetic Measurements and Observatory Practice” (Jankowski and Sucksdorff 1996). The instruments were similar too. Absolute measurements were made with the use of DI-flux magnetometers and proton magnetometers. The magnetic field variations were measured with the use of PSM magnetometers equipped in Bobrov’s quartz variometers. The spare sets are equipped in PSM magnetometers or LEMI flux-gate magnetometers.
Fig. 1. Location of the Belsk, Hel and Hornsund observatories.

Table 1
Coordinates of the Polish observatories

<table>
<thead>
<tr>
<th>Observatory</th>
<th>Geographic coordinates</th>
<th>Geomagnetic coordinates</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
<td>Latitude</td>
</tr>
<tr>
<td>Belsk (BEL)</td>
<td>51°50.2′ N</td>
<td>20°47.5′ E</td>
<td>50.2°N</td>
</tr>
<tr>
<td>Hel (HLP)</td>
<td>54°36.5′ N</td>
<td>18°49.0′ E</td>
<td>53.2°N</td>
</tr>
<tr>
<td>Hornsund (HRN)</td>
<td>77°0.0′ N</td>
<td>15°33.0′ E</td>
<td>73.9°N</td>
</tr>
</tbody>
</table>

Continuous recording has been made by means of microprocessor-based digital loggers DR-02 or DR-03. Owing to the recording system we use and the fact that we strictly obey the procedures relating to the so-called magnetic service, the gaps in one-minute data from Belsk and Hel are practically absent. Short gaps have only occurred in records of the Hornsund station, because the conditions prevailing there are much harder than in Poland.

It is worth mentioning that in 2008 the Belsk and Hornsund Observatories have been continuing the permanent observation of the Schumann resonance. Two horizontal magnetic components and the vertical component of the electric field have been recorded at a frequency of 100 Hz. This recording was initiated in both observatories in 2004 (Neska and Satori 2006).
2.1 Central Geophysical Observatory at Belsk, Central Poland

The Observatory at Belsk began continuous observations of the Earth magnetic field in 1965 (Jankowski and Marianiuk 2007). It continued the activity of the first Polish magnetic Observatory at Świder near Warsaw, working incessantly through the years 1920-1975. The magnetic observations were transferred from Świder to Belsk because of a strong increase of artificial noise from the Warsaw agglomeration, in particular due to the electric railroad passing nearby the Świder Observatory.

The Belsk Observatory is located at a distance of about 50 km south of Warsaw and about 2 km northwest of the village Belsk Duży. The premises of the Observatory, about 10 ha in area, is at the edge of the forest reserve Modrzewina, far away of people’s settlements and automobile traffic. The location of the observatory in relation to the nearby towns and villages is shown in Fig. 2. The Observatory is surrounded by typically agricultural regions (with fertile soil, mostly apple orchards), so the direct neighborhood is deprived of sources of major artificial geomagnetic field disturbances. It is only the electric railroad (DC powered) situated some 14 km away of the Observatory to the north that produces some small artificial magnetic disturbances, whose average level usually does not exceed 1 nT.

More information about the region in which the Observatory is located can be found, in English, Polish and German, on the internet pages of Grójec district (http://www.grojec.pl) to which the village Belsk Duży belongs. Relevant information can also be found at page of the Belsk Observatory (http://www.igf.edu.pl/pl/obserwatoria/cog_belsk).
2.2 Geophysical Observatory at Hel, Northern Poland

The Observatory at Hel began continuous observations of the earth magnetic field in 1932 (Jankowski and Marianiuk 2007). The observations were stopped in 1939, after the outbreak of World War II. During the war, the Observatory as well as its equipment and data were completely destroyed. After reconstruction, continuous observations at Hel were resumed in 1957.

The Hel Observatory is located in a small resort town at the end of Hel Peninsula by the Bay of Gdańsk (see Fig. 3). It is the area of Seaside Landscape Park (Nadmorski Park Krajobrazowy), weakly industrialized and urbanized. The region, surrounded by water from three sides, lacks any major artificial noise and is a good place for continuous magnetic observations.

The observatory premises, about 4.5 ha in area, is surrounded by mixed forest (mainly pine and birch trees). Pavilions with measurement and recording instruments are located at small clearings.

More information about the town of Hel where the Observatory is located can be found at the address: http://www.hel-miasto.pl/.

2.3 Hornsund, Spitsbergen

The Polish Polar Station Hornsund (PSP Hornsund) is situated on the White Bear Bay (Isbjørnhamna) in Hornsund Fiord, Spitsbergen Island, Svalbard archipelago. (See Fig. 4). More information on the Svalbard Archipelago can be found at the address: http://svalbard.com.
The Hornsund station is the northernmost Polish scientific facility carrying out year-round activity. The Hornsund region is situated in a zone of strong magnetic field activity, much stronger than on the magnetic pole. Therefore, it is a very interesting place for magnetic observations.

Polish geomagnetic observations in the Arctic were initiated during the II Polar Year; a magnetic station was then established by S. Siedlecki and C. Centkiewicz on the Bear Island. In the years 1932/33, they had carried out continuous recording of magnetic field and performed absolute measurements. In the years 1957/58, in the framework of the International Geophysical Year, measurements of magnetic declination and inclination were made by J. Kowalczuk and K. Karaczun in five sites in the Hornsund Fiord region.

Since the beginning of October 1978, continuous magnetic field recording has been put into operation, and systematic absolute measurements have been implemented (Jankowski and Marianiuk 2007). Since then, PSP Hornsund has begun to fulfill all the requirements for geomagnetic observatory.

Since 1993, PSP Hornsund has been participating in the IMAGE (International Monitor for Auroral Geomagnetic Effects) project. In the framework of this project, Hornsund data are being sent to a server in Finland, once a month on the average. Since 2002, PSP Hornsund is included into the global near-real-time magnetic observatory network INTERMAGNET, sending the results, via Internet, to the GIN (Geomorphic Information Nodes) centers in Edinburgh and Paris.

3. INSTRUMENTATION

3.1 Introduction

Simplified block diagrams of geomagnetic observations in Belsk, Hel, and Hornsund Observatories are shown in Figs. 5, 6, and 7.
Fig. 5. Block diagram of magnetic observations system at Belsk.

Fig. 6. Block diagram of magnetic observations system at Hel.
3.2 Absolute measurements

In all the three Polish observatories, the absolute measurements used for determination of bases of the recordings are performed by means of DI-flux and proton magnetometers. DI-flux magnetometers measure the absolute values of the angles of declination D and inclination I, while the proton magnetometers measure the absolute values of the total magnetic field vector F. From the measured values of F, D, and I, we can calculate all the remaining magnetic field components, H, X, Y, and Z.

The instruments for absolute measurements are listed in Table 2, and the basic parameters of the instruments in Table 3.

The results of absolute measurements are determined by means of a special computer package DIFLUX, which calculates the base values on the basis of data from the measurement protocol (Tomczyk 2008).

The bases B_A of digital recording of elements X, Y and Z were calculated from the formula:

$$B_A = A - \varepsilon_A \times (a - 32768),$$

where A is the result of absolute measurement [nT], ε_A is the scale value of the recording [nT/bit], a is the recorded instantaneous value [bits].

For the digital records with a resolution of 16 bits, the values of $2^{15} = 32768$ bits, corresponding to zero voltages on inputs of these loggers, were adopted as the base levels.
Table 2

Instruments for absolute measurements

<table>
<thead>
<tr>
<th></th>
<th>Belsk</th>
<th>Hel</th>
<th>Hornsund</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI-fluxgate</td>
<td>ELSEC 810,</td>
<td>FLUX-9408</td>
<td>FLUX-9408</td>
</tr>
<tr>
<td>sn: 13/1998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of measurements</td>
<td>6 per week</td>
<td>2 per week</td>
<td>2 per week</td>
</tr>
</tbody>
</table>

Table 3

Basic parameters of the instruments for absolute measurements

<table>
<thead>
<tr>
<th>Fluxgate declinometer/inclinometer ELSEC 810 / THEO-10B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producer .. ELSEC Oxford, UK</td>
</tr>
<tr>
<td>Mean square error of a horizontal direction σ_D ≈ ±5"</td>
</tr>
<tr>
<td>Mean square error of a zenith direction σ_I ≈ ±5"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fluxgate declinometer/inclinometer FLUX-9408 / THEO-10B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean square error of a horizontal direction σ_D ≈ ±5"</td>
</tr>
<tr>
<td>Mean square error of a zenith direction σ_I ≈ ±5"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proton magnetometer model PMP-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution 0.01 nT</td>
</tr>
<tr>
<td>Absolute accuracy 0.2 nT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proton magnetometer model PMP-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution 0.1 nT</td>
</tr>
<tr>
<td>Absolute accuracy 0.2 nT</td>
</tr>
</tbody>
</table>

Results of base determinations and the smoothed values adopted for further computations are depicted in Figs. 8, 9, 17, 18 and 26 in the chapters describing individual observatories.

The mean random errors of a single base measurement, m_B, and the number of measurements n taken in 2008 are listed in Table 4.

Thermal coefficients of magnetic sensors are not taken into account in calculations, with a view to the following facts:

- tests made every few years indicated that the coefficients are very small, less than 0.2 nT/°C,
the magnetic sensors are located in thermostat-controlled wooden boxes where the daily temperature variations are of the order of 0.1-0.2°C.

Table 4
Mean errors of measurements of B_X, B_Y and B_Z in 2008

| Observatory | Element | Set I | | | Set II | | |
|-------------|---------|------|---|---|------|---|
| | | Number of measurements [n] | Mean error [nT] | Number of measurements [n] | Mean error [nT] |
| Belsk | B_X | 293 | 0.4 | 291 | 0.5 |
| | B_Y | 293 | 0.5 | 291 | 0.5 |
| | B_Z | 293 | 0.2 | 291 | 0.2 |
| Hel | B_X | 101 | 0.5 | 100 | 0.6 |
| | B_Y | 101 | 0.5 | 100 | 0.5 |
| | B_Z | 101 | 0.3 | 100 | 0.4 |
| Hornsund | B_X | 104 | 1.1 | – | – |
| | B_Y | 104 | 0.9 | – | – |
| | B_Z | 107 | 0.5 | – | – |

3.3 Recording of geomagnetic field variations

As we already mentioned, the continuous digital recordings of geomagnetic field variations in all the Polish observatories are performed by means of magnetometers PSM and digital loggers DR-02 (or DR-03). In spare sets, we use magnetometers PSM or LEMI. Both the main and spare sets record the components in the rectangular coordinate system X, Y, Z. At Belsk and Hel, continuous recording of the total magnetic field modulus F is performed as well. The basic parameters of the recording systems are listed in Table 5.

Magnetometers PSM

Magnetometers PSM were designed at the Institute of Geophysics PAS with the use of torsion quartz variometers of V.N. Bobrov system (Marianiuk 1977, Jankowski et al. 1984). In these magnetometers, the magnet’s deflections in response to the magnetic field changes are transformed by means of photoelectric converters into the electric current changes. Owing to a strong negative feedback, the voltage changes on the output of the converter are in linear proportion to the magnetic field changes. The magnetometers PSM are characterized by good stability, of about 3-5 nT/year, and small noise, below 10 pT.
Table 5
Basic instruments for the magnetic field variations recording

<table>
<thead>
<tr>
<th>SET 1</th>
<th>Belsk</th>
<th>Hel</th>
<th>Hornsund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of magnetometer</td>
<td>PSM Bobrov</td>
<td>PSM Bobrov</td>
<td>PSM Bobrov</td>
</tr>
<tr>
<td>Kind of sensor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>PSM-8511-01P</td>
<td>PSM 8511-09P</td>
<td>PSM-8911-05P</td>
</tr>
<tr>
<td>Sensor’s orientation</td>
<td>XYZ</td>
<td>XYZ</td>
<td>XYZ</td>
</tr>
<tr>
<td>Range</td>
<td>+/- 850 nT</td>
<td>+/- 850 nT</td>
<td>+/- 5000 nT</td>
</tr>
<tr>
<td>Magnetometer’s producer</td>
<td>Institute of Geophysics PAS</td>
<td>Institute of Geophysics PAS</td>
<td>Institute of Geophysics PAS</td>
</tr>
<tr>
<td>Digital recorder Producer</td>
<td>DR-02, DR-03 EL-LAB</td>
<td>DR-03 EL-LAB</td>
<td>DR-02 EL-LAB</td>
</tr>
<tr>
<td>Sampling interval</td>
<td>5 s and 1 s</td>
<td>5 s</td>
<td>10 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SET 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of magnetometer</td>
<td>PSM Bobrov</td>
<td>PSM 8511-03P</td>
</tr>
<tr>
<td>Kind of sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>PSM-8511-01P</td>
<td>PSM 8511-03P</td>
</tr>
<tr>
<td>Sensor’s orientation</td>
<td>XYZ</td>
<td>XYZ</td>
</tr>
<tr>
<td>Range</td>
<td>+/- 820 nT</td>
<td>+/- 820 nT</td>
</tr>
<tr>
<td>Magnetometer’s producer</td>
<td>Institute of Geophysics PAS</td>
<td>Institute of Geophysics PAS</td>
</tr>
<tr>
<td>Digital recorder Producer</td>
<td>DR-02, DR-03 EL-LAB</td>
<td>DR-02 EL-LAB</td>
</tr>
<tr>
<td>Sampling interval</td>
<td>5 s and 1 s</td>
<td>5 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total field</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of magnetometer</td>
<td>PMP-5</td>
<td>PMP-5</td>
</tr>
<tr>
<td>Producer</td>
<td>Institute of Geophysics PAS</td>
<td>Institute of Geophysics PAS</td>
</tr>
<tr>
<td>Sampling interval</td>
<td>10 s</td>
<td>10 s</td>
</tr>
</tbody>
</table>

Magnetometers LEMI

Magnetometers LEMI were designed at the Lviv Centre of the Institute of Space Research (Ukraine). They employ flux-gate sensors. These magnetometers have been successfully used as auxiliary sets. Their stability is not much less than that of PSM’s, and they are also characterized by good orthogonality of sensors and relatively small self noise.
Proton magnetometers PMP-5 and PMP-8

Magnetometers PMP-5 and PMP-8 were designed at the Institute of Geophysics PAS. These are classical proton magnetometers, in which the precession signal is forced in a cycle of proton polarization by means of direct current. The resolution of magnetometers PMP-5 is 0.1nT, that of PMP-8 being 0.01nT. The stability of both magnetometers is better than 0.3 nT/year. More information about PMP-8 magnetometer can be found on the page:

http://www.igf.edu.pl/pl/zaklady_naukowe/konstrukcji_aparatury/aparatura

Digital loggers DR-02 and DR-03

The digital loggers were designed in the early 1990s by the enterprise EL-LAB (Poland) especially for recording the long-term slow-changing variations. These are independent instruments and their cooperation with the computer resolves itself to the read-out of data via the RS-232 interface. Model DR-03 is equipped in clock synchronized by a GPS.

3.4 Calibration of magnetic sensors

The verification of scale values of recording systems in all the three observatories was made by the classical electromagnetic method: electric currents were passed through calibration coils woven over variometers. The currents induce the magnetic field of precisely known intensity. The measurements are made at least few times a year.

Table 6

<table>
<thead>
<tr>
<th>Observatory</th>
<th>Set</th>
<th>Period</th>
<th>Scale values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belsk</td>
<td>Set I</td>
<td>Jan 01-Dec 31</td>
<td>0.0250</td>
</tr>
<tr>
<td></td>
<td>Set II</td>
<td>Jan 01-Dec 31</td>
<td>0.0249</td>
</tr>
<tr>
<td>Hel</td>
<td>Set I</td>
<td>Jan 01-Feb 27</td>
<td>0.0249</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feb 28-Oct 23</td>
<td>0.0254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct 24-Dec 31</td>
<td>0.0247</td>
</tr>
<tr>
<td></td>
<td>Set II</td>
<td>Jan 01-Feb 27</td>
<td>0.0250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feb 28-Dec 31</td>
<td>0.0249</td>
</tr>
<tr>
<td>Hornsund</td>
<td>Set I</td>
<td>Jan 01-Dec 31</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>Set II</td>
<td>Jan 01-Dec 31</td>
<td>0.307</td>
</tr>
</tbody>
</table>
The scale values of magnetometers PSM and LEMI, parameters of calibration coils of PSMs, and mutual orthogonality of sensors in PSMs and LEMIs is checked every few years in large calibration coils installed at the Belsk Observatory.

3.5 Data treatment

In processing the results of digital recordings we used the software packet developed for the needs of an observatory operating in the INTERMAGNET network. This software makes it possible to perform, among other things, the following operations:

- conversion of magnetic data into the INTERMAGNET text format IMFV1.22 and creation in this format of daily files containing one-minute means of X, Y, Z and F (authors: J. Reda and A. Pałka),
- automatic transmission of data, via the Internet, to the Institute of Geophysics PAS in Warsaw and data centers in Paris and Edinburgh (author: M. Neska),
- archivation of data and plotting of magnetograms (author: J. Reda),
- calculation of results of absolute measurements (author: S. Tomczyk),
- automatic calculation of geomagnetic indices K (Nowożyński et al. 1991). The indices are calculated with the use of ASm (Adaptive Smoothed) method, developed at the Institute of Geophysics PAS, and recommended by IAGA in 1991. The currently used program calculates the indices from one-minute means in the INTERMAGNET CD-ROM Data Format or in the IMFV1.22 format. The program for calculation of indices may be taken from the INTERMAGNET page: http://www.intermagnet.org/Software_e.html
- test printouts to check various parameters of recording adopted for calculation and a possibility of looking over current and past data curves or tables.

The diagrams illustrating the annual variations of X, Y, and Z, monthly variations of X, Y, Z and F, bases of recording sets as well as plots of K indices for 2008 were prepared with the use of program imagplot.exe provided to us by INTERMAGNET. The diagrams prepared by means of imagplot.exe and other diagrams related to 2008 data are shown in Figs. 8–32.

In the present yearbook, we include for the first time the E indices calculated for Belsk observatory. The E indices, unlike the K indices, are calculated on the basis of energy analysis. They have been described in detail by Reda and Jankowski (2004).

3.6 Data availability

The newest data from Belsk, Hel and Hornsund observatories can be viewed in graphic form through the WEB application http://rtbel.igf.edu.pl described by Nowożyński and Reda (2007).

On this page, the Belsk and Hel data appear with one-hour delay, while the delay for Hornsund is few hours. The page makes it possible to view the archival data from any observatory belonging to the INTERMAGNET network (in the form of curves on the screen). It offers also a possibility of calculating the K indices according to the ASm method (Nowożyński et al. 1991) and E indices (Reda and Jankowski 2004).
The current data (of status REPORTED) from all the three observatories can be found in INTERMAGNET at the Internet address:

http://www.intermagnet.org/apps/dl_data_prel_e.php

Data from Belsk, Hel and Hornsund are also available from the WDCs. Addresses of some WDC pages with magnetic data are the following:

WDC for Geomagnetism, Edinburgh http://www.wdc.bgs.ac.uk/catalog/master.html

WDC for Geomagnetism, Kyoto http://swdc234.kugi.kyoto-u.ac.jp/

All the three observatories have in their archives the original data, whose sampling periods are listed in Table 5. For those interested, these data can be made available on request.

4. CONTACT PERSON, POSTAL ADDRESS, CONTACT DETAILS

4.1 Belsk Observatory

Jan Reda, Mariusz Neska
Central Geophysical Observatory
05-622 Belsk
Poland
Tel.: +48 486610830 Fax: +48 486610840
E-mail: jreda@igf.edu.pl (J. Reda), nemar@igf.edu.pl (M. Neska)
http://www.igf.edu.pl/pl/obserwatoria/cog_belsk

4.2 Hel Observatory

Stanisław Wójcik
Geophysical Observatory
ul. Sosnowa 1
84-150 Hel
Poland
Tel./Fax +48 58 6750480
E-mail: hel@igf.edu.pl
http://www.igf.edu.pl

4.3 Hornsund

Mariusz Neska
Central Geophysical Observatory
05-622 Belsk
Poland
Tel.: +48 486610833 Fax: +48 486610840
E-mail: nemar@igf.edu.pl
5. PERSONNEL TAKING PART IN THE WORK OF BELSK, HEL AND HORNSSUND OBSERVATORIES IN 2008

5.1 Belsk

– Jan Reda (head of Geomagnetic Laboratory at Belsk to June 2008)
– Mariusz Neska (head of Geomagnetic Laboratory at Belsk since July 2008)
– Janusz Marianiuk (consulting)
– Halina Suska (data processing, observer)
– Krzysztof Kucharski (observer)
– Pawel Czubak (data processing, since October 2008)
– Józef Skowroński (observer)

5.2 Hel

– Stanisław Wójcik (head of Geophysical Observatory)
– Anna Wójcik (observer)
– Mariusz Neska (data processing)
– Jan Reda (data processing)

5.3 Hornsund

– Mariusz Neska (head of geomagnetic observations)
– Pawel Czubak (observer in 1-st half-year)
– Piotr Łepkowski (observer in 2-nd half-year)
– Jan Reda (data processing)

References

Technical data of PMP-8:
http://www.igf.edu.pl/pl/zaklady_naukowe/konstrukcji_aparatury/aparatura

Received March 23, 2009
Accepted April 27, 2009
Fig. 8. Base values of set 1, Belsk 2008.
Fig. 9. Base values of set 2, Belsk 2008.
Annual mean values of magnetic elements in Belsk Observatory

<table>
<thead>
<tr>
<th>No</th>
<th>Year</th>
<th>D [°]</th>
<th>H [nT]</th>
<th>Z [nT]</th>
<th>X [nT]</th>
<th>Y [nT]</th>
<th>I [°]</th>
<th>F [nT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1966</td>
<td>2.04</td>
<td>5.92</td>
<td>6.07</td>
<td>5.07</td>
<td>6.07</td>
<td>1.06</td>
<td>3.06</td>
</tr>
<tr>
<td>2</td>
<td>1967</td>
<td>2.05</td>
<td>5.94</td>
<td>6.09</td>
<td>5.07</td>
<td>6.08</td>
<td>2.07</td>
<td>4.07</td>
</tr>
<tr>
<td>3</td>
<td>1968</td>
<td>2.06</td>
<td>5.96</td>
<td>6.11</td>
<td>5.08</td>
<td>6.09</td>
<td>3.08</td>
<td>5.08</td>
</tr>
<tr>
<td>4</td>
<td>1969</td>
<td>2.07</td>
<td>5.98</td>
<td>6.13</td>
<td>5.10</td>
<td>6.10</td>
<td>4.09</td>
<td>6.09</td>
</tr>
<tr>
<td>5</td>
<td>1970</td>
<td>2.08</td>
<td>5.99</td>
<td>6.15</td>
<td>5.11</td>
<td>6.11</td>
<td>5.10</td>
<td>7.10</td>
</tr>
<tr>
<td>6</td>
<td>1971</td>
<td>2.09</td>
<td>6.01</td>
<td>6.17</td>
<td>5.13</td>
<td>6.12</td>
<td>6.11</td>
<td>8.11</td>
</tr>
<tr>
<td>10</td>
<td>1975</td>
<td>2.13</td>
<td>6.07</td>
<td>6.25</td>
<td>5.19</td>
<td>6.16</td>
<td>10.15</td>
<td>12.15</td>
</tr>
<tr>
<td>11</td>
<td>1976</td>
<td>2.14</td>
<td>6.08</td>
<td>6.27</td>
<td>5.20</td>
<td>6.17</td>
<td>11.16</td>
<td>13.16</td>
</tr>
<tr>
<td>12</td>
<td>1977</td>
<td>2.15</td>
<td>6.10</td>
<td>6.29</td>
<td>5.22</td>
<td>6.18</td>
<td>12.17</td>
<td>14.17</td>
</tr>
<tr>
<td>13</td>
<td>1978</td>
<td>2.16</td>
<td>6.11</td>
<td>6.31</td>
<td>5.23</td>
<td>6.19</td>
<td>13.18</td>
<td>15.18</td>
</tr>
<tr>
<td>15</td>
<td>1980</td>
<td>2.18</td>
<td>6.14</td>
<td>6.35</td>
<td>5.26</td>
<td>6.21</td>
<td>15.20</td>
<td>17.20</td>
</tr>
<tr>
<td>16</td>
<td>1981</td>
<td>2.19</td>
<td>6.16</td>
<td>6.37</td>
<td>5.28</td>
<td>6.22</td>
<td>16.21</td>
<td>18.21</td>
</tr>
<tr>
<td>17</td>
<td>1982</td>
<td>2.20</td>
<td>6.17</td>
<td>6.39</td>
<td>5.30</td>
<td>6.23</td>
<td>17.22</td>
<td>19.22</td>
</tr>
<tr>
<td>18</td>
<td>1983</td>
<td>2.21</td>
<td>6.19</td>
<td>6.41</td>
<td>5.32</td>
<td>6.24</td>
<td>18.23</td>
<td>20.23</td>
</tr>
<tr>
<td>20</td>
<td>1985</td>
<td>2.23</td>
<td>6.22</td>
<td>6.45</td>
<td>5.36</td>
<td>6.26</td>
<td>20.25</td>
<td>22.25</td>
</tr>
<tr>
<td>22</td>
<td>1987</td>
<td>2.25</td>
<td>6.25</td>
<td>6.49</td>
<td>5.40</td>
<td>6.28</td>
<td>22.27</td>
<td>24.27</td>
</tr>
<tr>
<td>23</td>
<td>1988</td>
<td>2.26</td>
<td>6.26</td>
<td>6.51</td>
<td>5.42</td>
<td>6.29</td>
<td>23.28</td>
<td>25.28</td>
</tr>
<tr>
<td>24</td>
<td>1989</td>
<td>2.27</td>
<td>6.28</td>
<td>6.53</td>
<td>5.44</td>
<td>6.30</td>
<td>24.29</td>
<td>26.29</td>
</tr>
<tr>
<td>25</td>
<td>1990</td>
<td>2.28</td>
<td>6.29</td>
<td>6.55</td>
<td>5.46</td>
<td>6.31</td>
<td>25.30</td>
<td>27.30</td>
</tr>
<tr>
<td>26</td>
<td>1991</td>
<td>2.29</td>
<td>6.31</td>
<td>6.57</td>
<td>5.48</td>
<td>6.32</td>
<td>26.31</td>
<td>28.31</td>
</tr>
<tr>
<td>27</td>
<td>1992</td>
<td>2.30</td>
<td>6.33</td>
<td>6.59</td>
<td>5.50</td>
<td>6.33</td>
<td>27.32</td>
<td>29.32</td>
</tr>
<tr>
<td>28</td>
<td>1993</td>
<td>2.31</td>
<td>6.35</td>
<td>6.61</td>
<td>5.52</td>
<td>6.34</td>
<td>28.33</td>
<td>30.33</td>
</tr>
<tr>
<td>29</td>
<td>1994</td>
<td>2.32</td>
<td>6.37</td>
<td>6.63</td>
<td>5.54</td>
<td>6.35</td>
<td>29.34</td>
<td>31.34</td>
</tr>
<tr>
<td>30</td>
<td>1995</td>
<td>2.33</td>
<td>6.39</td>
<td>6.65</td>
<td>5.56</td>
<td>6.36</td>
<td>30.35</td>
<td>32.35</td>
</tr>
<tr>
<td>31</td>
<td>1996</td>
<td>2.34</td>
<td>6.41</td>
<td>6.67</td>
<td>5.58</td>
<td>6.37</td>
<td>31.36</td>
<td>33.36</td>
</tr>
<tr>
<td>32</td>
<td>1997</td>
<td>2.35</td>
<td>6.43</td>
<td>6.69</td>
<td>5.60</td>
<td>6.38</td>
<td>32.37</td>
<td>34.37</td>
</tr>
<tr>
<td>33</td>
<td>1998</td>
<td>2.36</td>
<td>6.45</td>
<td>6.71</td>
<td>5.62</td>
<td>6.39</td>
<td>33.38</td>
<td>35.38</td>
</tr>
<tr>
<td>34</td>
<td>1999</td>
<td>2.37</td>
<td>6.47</td>
<td>6.73</td>
<td>5.64</td>
<td>6.40</td>
<td>34.39</td>
<td>36.39</td>
</tr>
<tr>
<td>35</td>
<td>2000</td>
<td>2.38</td>
<td>6.49</td>
<td>6.75</td>
<td>5.66</td>
<td>6.41</td>
<td>35.40</td>
<td>37.40</td>
</tr>
<tr>
<td>36</td>
<td>2001</td>
<td>2.39</td>
<td>6.51</td>
<td>6.77</td>
<td>5.68</td>
<td>6.42</td>
<td>36.41</td>
<td>38.41</td>
</tr>
<tr>
<td>37</td>
<td>2002</td>
<td>2.40</td>
<td>6.53</td>
<td>6.79</td>
<td>5.70</td>
<td>6.43</td>
<td>37.42</td>
<td>39.42</td>
</tr>
<tr>
<td>38</td>
<td>2003</td>
<td>2.41</td>
<td>6.55</td>
<td>6.81</td>
<td>5.72</td>
<td>6.44</td>
<td>38.43</td>
<td>40.43</td>
</tr>
<tr>
<td>39</td>
<td>2004</td>
<td>2.42</td>
<td>6.57</td>
<td>6.83</td>
<td>5.74</td>
<td>6.45</td>
<td>39.44</td>
<td>41.44</td>
</tr>
<tr>
<td>40</td>
<td>2005</td>
<td>2.43</td>
<td>6.59</td>
<td>6.85</td>
<td>5.76</td>
<td>6.46</td>
<td>40.45</td>
<td>42.45</td>
</tr>
<tr>
<td>41</td>
<td>2006</td>
<td>2.44</td>
<td>6.61</td>
<td>6.87</td>
<td>5.78</td>
<td>6.47</td>
<td>41.46</td>
<td>43.46</td>
</tr>
<tr>
<td>42</td>
<td>2007</td>
<td>2.45</td>
<td>6.63</td>
<td>6.89</td>
<td>5.80</td>
<td>6.48</td>
<td>42.47</td>
<td>44.47</td>
</tr>
<tr>
<td>43</td>
<td>2008</td>
<td>2.46</td>
<td>6.65</td>
<td>6.91</td>
<td>5.82</td>
<td>6.49</td>
<td>43.48</td>
<td>45.48</td>
</tr>
</tbody>
</table>
Fig. 10. Secular changes of H, X, Y, Z, F, D and I at Belsk.
MONTHLY AND YEARLY MEAN VALUES OF MAGNETIC ELEMENTS

BELSK 2008

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTH COMPONENT:</td>
<td></td>
<td>18500 + ... in nT</td>
</tr>
<tr>
<td>All days</td>
<td>443</td>
<td>440</td>
<td>438</td>
<td>442</td>
<td>450</td>
<td>450</td>
<td>448</td>
<td>446</td>
<td>443</td>
<td>446</td>
<td>447</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>Quiet days</td>
<td>450</td>
<td>447</td>
<td>445</td>
<td>444</td>
<td>452</td>
<td>451</td>
<td>450</td>
<td>447</td>
<td>448</td>
<td>448</td>
<td>450</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>Disturbed days</td>
<td>437</td>
<td>435</td>
<td>429</td>
<td>436</td>
<td>447</td>
<td>451</td>
<td>446</td>
<td>445</td>
<td>441</td>
<td>437</td>
<td>441</td>
<td>442</td>
<td>441</td>
</tr>
<tr>
<td>EAST COMPONENT:</td>
<td></td>
<td>1500 + ... in nT</td>
</tr>
<tr>
<td>All days</td>
<td>98</td>
<td>103</td>
<td>106</td>
<td>108</td>
<td>110</td>
<td>114</td>
<td>117</td>
<td>120</td>
<td>123</td>
<td>127</td>
<td>130</td>
<td>133</td>
<td>116</td>
</tr>
<tr>
<td>Quiet days</td>
<td>96</td>
<td>101</td>
<td>104</td>
<td>107</td>
<td>110</td>
<td>114</td>
<td>116</td>
<td>119</td>
<td>123</td>
<td>126</td>
<td>129</td>
<td>131</td>
<td>115</td>
</tr>
<tr>
<td>Disturbed days</td>
<td>100</td>
<td>108</td>
<td>111</td>
<td>110</td>
<td>111</td>
<td>113</td>
<td>118</td>
<td>122</td>
<td>124</td>
<td>129</td>
<td>131</td>
<td>135</td>
<td>118</td>
</tr>
<tr>
<td>VERTICAL COMPONENT:</td>
<td></td>
<td>46000 + ... in nT</td>
</tr>
<tr>
<td>All days</td>
<td>223</td>
<td>228</td>
<td>231</td>
<td>231</td>
<td>231</td>
<td>234</td>
<td>237</td>
<td>238</td>
<td>241</td>
<td>246</td>
<td>247</td>
<td>250</td>
<td>236</td>
</tr>
<tr>
<td>Quiet days</td>
<td>221</td>
<td>227</td>
<td>229</td>
<td>230</td>
<td>229</td>
<td>233</td>
<td>236</td>
<td>238</td>
<td>241</td>
<td>245</td>
<td>246</td>
<td>249</td>
<td>235</td>
</tr>
<tr>
<td>Disturbed days</td>
<td>223</td>
<td>228</td>
<td>231</td>
<td>232</td>
<td>233</td>
<td>238</td>
<td>239</td>
<td>241</td>
<td>247</td>
<td>247</td>
<td>247</td>
<td>250</td>
<td>237</td>
</tr>
</tbody>
</table>
Three-hour-range K indices
Belsk, January - March, 2008

The limit of K=9 is 450

<table>
<thead>
<tr>
<th>Day</th>
<th>January</th>
<th>February</th>
<th>March</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SK</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>2201</td>
<td>1011</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>0111</td>
<td>1120</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0101</td>
<td>1012</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0000</td>
<td>1112</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2234</td>
<td>4354</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>3332</td>
<td>3454</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>3333</td>
<td>3223</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>2223</td>
<td>2443</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>3222</td>
<td>1122</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>2111</td>
<td>2212</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>2111</td>
<td>1120</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>0012</td>
<td>3422</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>3111</td>
<td>2342</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>3224</td>
<td>3453</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>2222</td>
<td>3222</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>2233</td>
<td>3333</td>
<td>22</td>
</tr>
<tr>
<td>17</td>
<td>3212</td>
<td>4234</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>3322</td>
<td>2332</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>1223</td>
<td>3522</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>1221</td>
<td>2132</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>1112</td>
<td>2233</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>1111</td>
<td>1110</td>
<td>7</td>
</tr>
<tr>
<td>23</td>
<td>0012</td>
<td>2133</td>
<td>12</td>
</tr>
<tr>
<td>24</td>
<td>1111</td>
<td>2232</td>
<td>13</td>
</tr>
<tr>
<td>25</td>
<td>3322</td>
<td>1142</td>
<td>18</td>
</tr>
<tr>
<td>26</td>
<td>3222</td>
<td>1213</td>
<td>16</td>
</tr>
<tr>
<td>27</td>
<td>1101</td>
<td>1232</td>
<td>11</td>
</tr>
<tr>
<td>28</td>
<td>1101</td>
<td>1123</td>
<td>10</td>
</tr>
<tr>
<td>29</td>
<td>1222</td>
<td>1100</td>
<td>9</td>
</tr>
<tr>
<td>30</td>
<td>1111</td>
<td>1000</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>0011</td>
<td>2333</td>
<td>13</td>
</tr>
</tbody>
</table>
Three-hour-range K indices

Belsk, April - June, 2008

The limit of K=9 is 450

<table>
<thead>
<tr>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>K</td>
<td>SK</td>
</tr>
<tr>
<td>1</td>
<td>1212</td>
<td>1110</td>
</tr>
<tr>
<td>2</td>
<td>0101</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>2101</td>
<td>1201</td>
</tr>
<tr>
<td>4</td>
<td>0011</td>
<td>2444</td>
</tr>
<tr>
<td>5</td>
<td>2223</td>
<td>2534</td>
</tr>
<tr>
<td>6</td>
<td>3343</td>
<td>3234</td>
</tr>
<tr>
<td>7</td>
<td>3322</td>
<td>3143</td>
</tr>
<tr>
<td>8</td>
<td>2213</td>
<td>4233</td>
</tr>
<tr>
<td>9</td>
<td>3233</td>
<td>3233</td>
</tr>
<tr>
<td>10</td>
<td>3222</td>
<td>3233</td>
</tr>
<tr>
<td>11</td>
<td>3112</td>
<td>2211</td>
</tr>
<tr>
<td>12</td>
<td>3223</td>
<td>3243</td>
</tr>
<tr>
<td>13</td>
<td>2112</td>
<td>3421</td>
</tr>
<tr>
<td>14</td>
<td>1100</td>
<td>0110</td>
</tr>
<tr>
<td>15</td>
<td>0111</td>
<td>3223</td>
</tr>
<tr>
<td>16</td>
<td>2223</td>
<td>4353</td>
</tr>
<tr>
<td>17</td>
<td>3211</td>
<td>2321</td>
</tr>
<tr>
<td>18</td>
<td>2222</td>
<td>2222</td>
</tr>
<tr>
<td>19</td>
<td>2211</td>
<td>1223</td>
</tr>
<tr>
<td>20</td>
<td>2111</td>
<td>1221</td>
</tr>
<tr>
<td>21</td>
<td>1111</td>
<td>1211</td>
</tr>
<tr>
<td>22</td>
<td>0111</td>
<td>1323</td>
</tr>
<tr>
<td>23</td>
<td>3443</td>
<td>3434</td>
</tr>
<tr>
<td>24</td>
<td>3334</td>
<td>3223</td>
</tr>
<tr>
<td>25</td>
<td>2222</td>
<td>3232</td>
</tr>
<tr>
<td>26</td>
<td>3122</td>
<td>2433</td>
</tr>
<tr>
<td>27</td>
<td>2222</td>
<td>2322</td>
</tr>
<tr>
<td>28</td>
<td>1123</td>
<td>4444</td>
</tr>
<tr>
<td>29</td>
<td>3221</td>
<td>1121</td>
</tr>
<tr>
<td>30</td>
<td>0111</td>
<td>1452</td>
</tr>
<tr>
<td>31</td>
<td>1223</td>
<td>3332</td>
</tr>
</tbody>
</table>
Three-hour-range K indices

BelSK, July - September, 2008

The limit of K=9 is 450

<table>
<thead>
<tr>
<th>Day</th>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SK</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>2112</td>
<td>2111</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>2111</td>
<td>1010</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>1101</td>
<td>2211</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>0111</td>
<td>2321</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>2112</td>
<td>3333</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>2111</td>
<td>1111</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>1121</td>
<td>1102</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>0011</td>
<td>1111</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>0111</td>
<td>1111</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>0112</td>
<td>2222</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>2122</td>
<td>3223</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>3433</td>
<td>4232</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>2233</td>
<td>3432</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>2223</td>
<td>3423</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>3222</td>
<td>2222</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>2111</td>
<td>1222</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>2211</td>
<td>1220</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>1111</td>
<td>2111</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td>1001</td>
<td>1101</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>1111</td>
<td>1121</td>
<td>9</td>
</tr>
<tr>
<td>21</td>
<td>1221</td>
<td>2222</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>1123</td>
<td>4333</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>3323</td>
<td>4333</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>3222</td>
<td>2222</td>
<td>17</td>
</tr>
<tr>
<td>25</td>
<td>1202</td>
<td>1101</td>
<td>8</td>
</tr>
<tr>
<td>26</td>
<td>2212</td>
<td>2221</td>
<td>14</td>
</tr>
<tr>
<td>27</td>
<td>0112</td>
<td>2124</td>
<td>13</td>
</tr>
<tr>
<td>28</td>
<td>2221</td>
<td>1211</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>0111</td>
<td>1212</td>
<td>9</td>
</tr>
<tr>
<td>30</td>
<td>1212</td>
<td>1222</td>
<td>13</td>
</tr>
<tr>
<td>31</td>
<td>1111</td>
<td>2211</td>
<td>10</td>
</tr>
</tbody>
</table>
Three-hour-range K indices

Belsk, October - December, 2008

The limit of K=9 is 450

<table>
<thead>
<tr>
<th>Day</th>
<th>October K</th>
<th>October SK</th>
<th>November K</th>
<th>November SK</th>
<th>December K</th>
<th>December SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2222</td>
<td>2233</td>
<td>1111</td>
<td>0121</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>2</td>
<td>3323</td>
<td>4343</td>
<td>0011</td>
<td>0102</td>
<td>0000</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>3232</td>
<td>3333</td>
<td>0101</td>
<td>0111</td>
<td>0111</td>
<td>1222</td>
</tr>
<tr>
<td>4</td>
<td>2323</td>
<td>2213</td>
<td>1010</td>
<td>0001</td>
<td>2322</td>
<td>3312</td>
</tr>
<tr>
<td>5</td>
<td>2211</td>
<td>1112</td>
<td>0000</td>
<td>0000</td>
<td>2212</td>
<td>2525</td>
</tr>
<tr>
<td>6</td>
<td>1211</td>
<td>0101</td>
<td>0000</td>
<td>1010</td>
<td>3422</td>
<td>2432</td>
</tr>
<tr>
<td>7</td>
<td>0001</td>
<td>1120</td>
<td>0222</td>
<td>3235</td>
<td>2222</td>
<td>3322</td>
</tr>
<tr>
<td>8</td>
<td>1100</td>
<td>0001</td>
<td>3223</td>
<td>3232</td>
<td>1110</td>
<td>1231</td>
</tr>
<tr>
<td>9</td>
<td>0010</td>
<td>1000</td>
<td>4222</td>
<td>2233</td>
<td>0000</td>
<td>0100</td>
</tr>
<tr>
<td>10</td>
<td>0111</td>
<td>1103</td>
<td>1111</td>
<td>1210</td>
<td>0001</td>
<td>1222</td>
</tr>
<tr>
<td>11</td>
<td>2143</td>
<td>5753</td>
<td>0111</td>
<td>0100</td>
<td>2211</td>
<td>1221</td>
</tr>
<tr>
<td>12</td>
<td>4323</td>
<td>2324</td>
<td>1011</td>
<td>1111</td>
<td>1011</td>
<td>1112</td>
</tr>
<tr>
<td>13</td>
<td>3222</td>
<td>1232</td>
<td>1001</td>
<td>1000</td>
<td>2111</td>
<td>0011</td>
</tr>
<tr>
<td>14</td>
<td>1111</td>
<td>1221</td>
<td>0001</td>
<td>0111</td>
<td>1000</td>
<td>0000</td>
</tr>
<tr>
<td>15</td>
<td>3222</td>
<td>1122</td>
<td>2110</td>
<td>0123</td>
<td>0111</td>
<td>0112</td>
</tr>
<tr>
<td>16</td>
<td>1111</td>
<td>0111</td>
<td>3222</td>
<td>2133</td>
<td>1111</td>
<td>2133</td>
</tr>
<tr>
<td>17</td>
<td>0000</td>
<td>1100</td>
<td>2120</td>
<td>0011</td>
<td>3211</td>
<td>1221</td>
</tr>
<tr>
<td>18</td>
<td>0000</td>
<td>0011</td>
<td>1000</td>
<td>0110</td>
<td>0000</td>
<td>1121</td>
</tr>
<tr>
<td>19</td>
<td>1112</td>
<td>2333</td>
<td>0001</td>
<td>0110</td>
<td>1101</td>
<td>2212</td>
</tr>
<tr>
<td>20</td>
<td>1010</td>
<td>1122</td>
<td>0100</td>
<td>0022</td>
<td>1001</td>
<td>1110</td>
</tr>
<tr>
<td>21</td>
<td>2211</td>
<td>1112</td>
<td>1001</td>
<td>0010</td>
<td>0111</td>
<td>0100</td>
</tr>
<tr>
<td>22</td>
<td>0011</td>
<td>1233</td>
<td>0001</td>
<td>0011</td>
<td>0000</td>
<td>1432</td>
</tr>
<tr>
<td>23</td>
<td>2111</td>
<td>1111</td>
<td>2110</td>
<td>0010</td>
<td>2222</td>
<td>2344</td>
</tr>
<tr>
<td>24</td>
<td>0110</td>
<td>0000</td>
<td>0000</td>
<td>0013</td>
<td>2122</td>
<td>1332</td>
</tr>
<tr>
<td>25</td>
<td>0001</td>
<td>1111</td>
<td>3333</td>
<td>3232</td>
<td>1001</td>
<td>2131</td>
</tr>
<tr>
<td>26</td>
<td>0211</td>
<td>1201</td>
<td>3322</td>
<td>2233</td>
<td>1100</td>
<td>1122</td>
</tr>
<tr>
<td>27</td>
<td>1011</td>
<td>0000</td>
<td>2222</td>
<td>2233</td>
<td>2001</td>
<td>1011</td>
</tr>
<tr>
<td>28</td>
<td>0122</td>
<td>1222</td>
<td>1211</td>
<td>1123</td>
<td>2011</td>
<td>1111</td>
</tr>
<tr>
<td>29</td>
<td>2342</td>
<td>2444</td>
<td>1111</td>
<td>0122</td>
<td>1001</td>
<td>0101</td>
</tr>
<tr>
<td>30</td>
<td>3223</td>
<td>2543</td>
<td>1011</td>
<td>0210</td>
<td>0000</td>
<td>0011</td>
</tr>
<tr>
<td>31</td>
<td>2222</td>
<td>1233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Three-hour-range E indices

based on power spectrum estimation (\textasteriskcentered)

Belsk, January - March, 2008

<table>
<thead>
<tr>
<th>Day</th>
<th>January</th>
<th>February</th>
<th>March</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SE</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>2201</td>
<td>1001</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0011</td>
<td>0120</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0000</td>
<td>0011</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0000</td>
<td>0012</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2344</td>
<td>4455</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>4433</td>
<td>4554</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>4332</td>
<td>3123</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>2223</td>
<td>2544</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>4222</td>
<td>1122</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>2101</td>
<td>2212</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>3111</td>
<td>0020</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>0011</td>
<td>2433</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>3111</td>
<td>3452</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>4225</td>
<td>3564</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>2222</td>
<td>3233</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>2333</td>
<td>3433</td>
<td>24</td>
</tr>
<tr>
<td>17</td>
<td>3212</td>
<td>4234</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>3322</td>
<td>2443</td>
<td>23</td>
</tr>
<tr>
<td>19</td>
<td>1123</td>
<td>3532</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>1321</td>
<td>2033</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>1112</td>
<td>2233</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>1100</td>
<td>1110</td>
<td>5</td>
</tr>
<tr>
<td>23</td>
<td>0012</td>
<td>1142</td>
<td>11</td>
</tr>
<tr>
<td>24</td>
<td>1101</td>
<td>2241</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>3322</td>
<td>1152</td>
<td>19</td>
</tr>
<tr>
<td>26</td>
<td>4222</td>
<td>2203</td>
<td>17</td>
</tr>
<tr>
<td>27</td>
<td>1101</td>
<td>1143</td>
<td>12</td>
</tr>
<tr>
<td>28</td>
<td>0101</td>
<td>1024</td>
<td>9</td>
</tr>
<tr>
<td>29</td>
<td>1212</td>
<td>1000</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>1100</td>
<td>0000</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>0001</td>
<td>1344</td>
<td>13</td>
</tr>
</tbody>
</table>

* - see literature: Reda and Jankowski, 2004
Three-hour-range E indices
based on power spectrum estimation(*)
Belsk, April – June, 2008

<table>
<thead>
<tr>
<th>Day</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SE</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>1211</td>
<td>0100</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1001</td>
<td>1100</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0001</td>
<td>2455</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>1113</td>
<td>2635</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>3443</td>
<td>3244</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>4321</td>
<td>1544</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>1113</td>
<td>4234</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>3233</td>
<td>3233</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>3212</td>
<td>3232</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>3102</td>
<td>2301</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>3323</td>
<td>3243</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>1112</td>
<td>3531</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>1100</td>
<td>0000</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>0011</td>
<td>2224</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>3123</td>
<td>4353</td>
<td>24</td>
</tr>
<tr>
<td>17</td>
<td>4211</td>
<td>1210</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>2122</td>
<td>1112</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>2111</td>
<td>0224</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>2011</td>
<td>1321</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>1101</td>
<td>0110</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>0001</td>
<td>0333</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>3444</td>
<td>4544</td>
<td>32</td>
</tr>
<tr>
<td>24</td>
<td>4443</td>
<td>4223</td>
<td>26</td>
</tr>
<tr>
<td>25</td>
<td>2222</td>
<td>2232</td>
<td>17</td>
</tr>
<tr>
<td>26</td>
<td>3122</td>
<td>2434</td>
<td>21</td>
</tr>
<tr>
<td>27</td>
<td>2222</td>
<td>2311</td>
<td>15</td>
</tr>
<tr>
<td>28</td>
<td>1113</td>
<td>3543</td>
<td>21</td>
</tr>
<tr>
<td>29</td>
<td>3210</td>
<td>1121</td>
<td>11</td>
</tr>
<tr>
<td>30</td>
<td>0001</td>
<td>0452</td>
<td>12</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - see literature: Reda and Jankowski, 2004
Three-hour-range E indices
based on power spectrum estimation(*)

Belsk, August - September, 2008

<table>
<thead>
<tr>
<th>Day</th>
<th>July K</th>
<th>SE</th>
<th>August K</th>
<th>SE</th>
<th>September K</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2111</td>
<td>2101</td>
<td>9</td>
<td>0000</td>
<td>1112</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2001</td>
<td>1010</td>
<td>5</td>
<td>0000</td>
<td>1011</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0001</td>
<td>2210</td>
<td>6</td>
<td>0011</td>
<td>1223</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>0010</td>
<td>2211</td>
<td>7</td>
<td>1001</td>
<td>1111</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1112</td>
<td>4333</td>
<td>18</td>
<td>0011</td>
<td>1100</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>2120</td>
<td>1010</td>
<td>7</td>
<td>1112</td>
<td>1222</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>1111</td>
<td>0002</td>
<td>6</td>
<td>1101</td>
<td>1222</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>0002</td>
<td>1111</td>
<td>6</td>
<td>0000</td>
<td>1202</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>0001</td>
<td>1111</td>
<td>5</td>
<td>3333</td>
<td>3556</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>0002</td>
<td>2112</td>
<td>8</td>
<td>4431</td>
<td>1432</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>1112</td>
<td>4213</td>
<td>15</td>
<td>3112</td>
<td>3212</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>3444</td>
<td>4332</td>
<td>27</td>
<td>1221</td>
<td>2312</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>2223</td>
<td>3443</td>
<td>23</td>
<td>3101</td>
<td>1111</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>2223</td>
<td>3423</td>
<td>21</td>
<td>3311</td>
<td>2110</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>3221</td>
<td>1223</td>
<td>16</td>
<td>3101</td>
<td>0010</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>1111</td>
<td>1222</td>
<td>11</td>
<td>0111</td>
<td>1124</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>3111</td>
<td>1110</td>
<td>9</td>
<td>3112</td>
<td>3212</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>0111</td>
<td>1110</td>
<td>6</td>
<td>2324</td>
<td>5453</td>
<td>28</td>
</tr>
<tr>
<td>19</td>
<td>0001</td>
<td>1001</td>
<td>3</td>
<td>3222</td>
<td>2431</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>1001</td>
<td>0021</td>
<td>5</td>
<td>2112</td>
<td>1100</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>2111</td>
<td>2222</td>
<td>13</td>
<td>0001</td>
<td>1021</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>0123</td>
<td>4434</td>
<td>21</td>
<td>1110</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>3422</td>
<td>5442</td>
<td>26</td>
<td>1000</td>
<td>1001</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>4222</td>
<td>2221</td>
<td>17</td>
<td>0000</td>
<td>1002</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>0102</td>
<td>1001</td>
<td>5</td>
<td>0000</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>2102</td>
<td>1221</td>
<td>11</td>
<td>0000</td>
<td>1110</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>2012</td>
<td>1125</td>
<td>12</td>
<td>2111</td>
<td>1000</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>2221</td>
<td>1100</td>
<td>9</td>
<td>0000</td>
<td>1112</td>
<td>5</td>
</tr>
<tr>
<td>29</td>
<td>0001</td>
<td>1112</td>
<td>6</td>
<td>1010</td>
<td>1110</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>1201</td>
<td>1121</td>
<td>9</td>
<td>0011</td>
<td>0000</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>0111</td>
<td>1211</td>
<td>8</td>
<td>0001</td>
<td>1221</td>
<td>7</td>
</tr>
</tbody>
</table>

* - see literature: Reda and Jankowski, 2004
Three-hour-range E indices

based on power spectrum estimation(*)

Belisk, October - December, 2008

<table>
<thead>
<tr>
<th>Day</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SE</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>2122</td>
<td>2234</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>3323</td>
<td>4343</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>3233</td>
<td>4344</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>2423</td>
<td>2203</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>1211</td>
<td>1002</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>0000</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0000</td>
<td>0120</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>1100</td>
<td>0000</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0000</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0001</td>
<td>1103</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>2144</td>
<td>6754</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>5333</td>
<td>3424</td>
<td>27</td>
</tr>
<tr>
<td>13</td>
<td>4222</td>
<td>1232</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>1011</td>
<td>1221</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>3322</td>
<td>1122</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>1001</td>
<td>0010</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>0000</td>
<td>1100</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>0000</td>
<td>0010</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1112</td>
<td>2234</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>1000</td>
<td>1122</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>2111</td>
<td>1012</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td>0000</td>
<td>1343</td>
<td>11</td>
</tr>
<tr>
<td>23</td>
<td>1010</td>
<td>0000</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>0000</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0000</td>
<td>0011</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>0221</td>
<td>1202</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>0000</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0022</td>
<td>1221</td>
<td>10</td>
</tr>
<tr>
<td>29</td>
<td>3242</td>
<td>2544</td>
<td>26</td>
</tr>
<tr>
<td>30</td>
<td>3223</td>
<td>2543</td>
<td>24</td>
</tr>
<tr>
<td>31</td>
<td>1221</td>
<td>1133</td>
<td>14</td>
</tr>
</tbody>
</table>

* - see literature: Reda and Jankowski, 2004
Fig. 11. K-indices in graphical form, Belsk 2008.
Fig. 12. Daily mean data plot for Belsk 2008.
Fig. 13. Hourly mean data plot of X component for Belsk 2008.
BEL - Hourly Mean Values

Magnetic Declination Y (nT) 2008

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Fig. 14. Hourly mean data plot of Y component for Belsk 2008.
Fig. 15. Hourly mean data plot of Z component for Belsk 2008.
Fig. 16. Hourly mean data plot of F component for Belsk 2008.
Tables and plots for Hel Observatory

Fig. 17. Base values of set 1, Hel 2008.
Fig. 18. Base values of set 2, Hel 2008.
Annual mean values of magnetic elements in Hel Observatory

<table>
<thead>
<tr>
<th>No</th>
<th>Year</th>
<th>(D) [°]</th>
<th>(H) [nT]</th>
<th>(Z) [nT]</th>
<th>(X) [nT]</th>
<th>(Y) [nT]</th>
<th>(I) [°]</th>
<th>(F) [nT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1953</td>
<td>-0 14.5</td>
<td>17388</td>
<td>45327</td>
<td>17388</td>
<td>-73</td>
<td>69 00.8</td>
<td>48548</td>
</tr>
<tr>
<td>2</td>
<td>1954</td>
<td>-0 10.0</td>
<td>17394</td>
<td>45374</td>
<td>17394</td>
<td>-51</td>
<td>69 01.5</td>
<td>48594</td>
</tr>
<tr>
<td>3</td>
<td>1955</td>
<td>-0 04.2</td>
<td>17379</td>
<td>45430</td>
<td>17379</td>
<td>-21</td>
<td>69 03.9</td>
<td>48640</td>
</tr>
<tr>
<td>4</td>
<td>1956</td>
<td>0 03.9</td>
<td>17371</td>
<td>45450</td>
<td>17371</td>
<td>20</td>
<td>69 05.0</td>
<td>48656</td>
</tr>
<tr>
<td>5</td>
<td>1957</td>
<td>0 05.7</td>
<td>17372</td>
<td>45475</td>
<td>17372</td>
<td>29</td>
<td>69 05.5</td>
<td>48680</td>
</tr>
<tr>
<td>6</td>
<td>1958</td>
<td>0 10.2</td>
<td>17380</td>
<td>45352</td>
<td>17380</td>
<td>52</td>
<td>69 06.5</td>
<td>48739</td>
</tr>
<tr>
<td>7</td>
<td>1959</td>
<td>0 14.7</td>
<td>17390</td>
<td>45565</td>
<td>17390</td>
<td>74</td>
<td>69 06.6</td>
<td>48771</td>
</tr>
<tr>
<td>8</td>
<td>1960</td>
<td>0 17.6</td>
<td>17402</td>
<td>45602</td>
<td>17402</td>
<td>89</td>
<td>69 06.8</td>
<td>48810</td>
</tr>
<tr>
<td>9</td>
<td>1961</td>
<td>0 19.8</td>
<td>17422</td>
<td>45625</td>
<td>17422</td>
<td>100</td>
<td>69 06.0</td>
<td>48838</td>
</tr>
<tr>
<td>10</td>
<td>1962</td>
<td>0 22.7</td>
<td>17438</td>
<td>45647</td>
<td>17438</td>
<td>115</td>
<td>69 05.5</td>
<td>48864</td>
</tr>
<tr>
<td>11</td>
<td>1963</td>
<td>0 26.5</td>
<td>17449</td>
<td>45663</td>
<td>17448</td>
<td>134</td>
<td>69 05.2</td>
<td>48883</td>
</tr>
<tr>
<td>12</td>
<td>1964</td>
<td>0 28.6</td>
<td>17464</td>
<td>45676</td>
<td>17463</td>
<td>145</td>
<td>69 04.6</td>
<td>48901</td>
</tr>
<tr>
<td>13</td>
<td>1965</td>
<td>0 30.0</td>
<td>17476</td>
<td>45692</td>
<td>17475</td>
<td>152</td>
<td>69 04.2</td>
<td>48920</td>
</tr>
<tr>
<td>14</td>
<td>1966</td>
<td>0 31.6</td>
<td>17485</td>
<td>45710</td>
<td>17484</td>
<td>161</td>
<td>69 04.0</td>
<td>48940</td>
</tr>
<tr>
<td>15</td>
<td>1967</td>
<td>0 33.3</td>
<td>17492</td>
<td>45743</td>
<td>17491</td>
<td>169</td>
<td>69 04.4</td>
<td>48973</td>
</tr>
<tr>
<td>16</td>
<td>1968</td>
<td>0 34.4</td>
<td>17502</td>
<td>45769</td>
<td>17501</td>
<td>175</td>
<td>69 04.4</td>
<td>49001</td>
</tr>
<tr>
<td>17</td>
<td>1969</td>
<td>0 34.3</td>
<td>17524</td>
<td>45792</td>
<td>17523</td>
<td>175</td>
<td>69 03.5</td>
<td>49030</td>
</tr>
<tr>
<td>18</td>
<td>1970</td>
<td>0 34.8</td>
<td>17542</td>
<td>45824</td>
<td>17541</td>
<td>178</td>
<td>69 03.2</td>
<td>49067</td>
</tr>
<tr>
<td>19</td>
<td>1971</td>
<td>0 35.7</td>
<td>17565</td>
<td>45849</td>
<td>17564</td>
<td>182</td>
<td>69 02.3</td>
<td>49098</td>
</tr>
<tr>
<td>20</td>
<td>1972</td>
<td>0 36.1</td>
<td>17579</td>
<td>45880</td>
<td>17578</td>
<td>184</td>
<td>69 02.1</td>
<td>49132</td>
</tr>
<tr>
<td>21</td>
<td>1973</td>
<td>0 38.5</td>
<td>17595</td>
<td>45912</td>
<td>17594</td>
<td>197</td>
<td>69 01.9</td>
<td>49168</td>
</tr>
<tr>
<td>22</td>
<td>1974</td>
<td>0 41.9</td>
<td>17606</td>
<td>45951</td>
<td>17605</td>
<td>215</td>
<td>69 02.2</td>
<td>49208</td>
</tr>
<tr>
<td>23</td>
<td>1975</td>
<td>0 45.0</td>
<td>17625</td>
<td>45984</td>
<td>17623</td>
<td>231</td>
<td>69 01.7</td>
<td>49246</td>
</tr>
<tr>
<td>24</td>
<td>1976</td>
<td>0 49.6</td>
<td>17639</td>
<td>46015</td>
<td>17637</td>
<td>254</td>
<td>69 01.6</td>
<td>49280</td>
</tr>
<tr>
<td>25</td>
<td>1977</td>
<td>0 55.0</td>
<td>17651</td>
<td>46045</td>
<td>17649</td>
<td>282</td>
<td>69 01.5</td>
<td>49312</td>
</tr>
<tr>
<td>26</td>
<td>1978</td>
<td>1 00.2</td>
<td>17646</td>
<td>46085</td>
<td>17643</td>
<td>309</td>
<td>69 02.9</td>
<td>49349</td>
</tr>
<tr>
<td>27</td>
<td>1979</td>
<td>1 05.1</td>
<td>17651</td>
<td>46112</td>
<td>17648</td>
<td>334</td>
<td>69 03.2</td>
<td>49375</td>
</tr>
<tr>
<td>28</td>
<td>1980</td>
<td>1 11.5</td>
<td>17653</td>
<td>46127</td>
<td>17649</td>
<td>367</td>
<td>69 03.5</td>
<td>49390</td>
</tr>
<tr>
<td>29</td>
<td>1981</td>
<td>1 17.5</td>
<td>17637</td>
<td>46156</td>
<td>17632</td>
<td>398</td>
<td>69 05.2</td>
<td>49411</td>
</tr>
<tr>
<td>30</td>
<td>1982</td>
<td>1 23.4</td>
<td>17620</td>
<td>46184</td>
<td>17615</td>
<td>427</td>
<td>69 07.1</td>
<td>49431</td>
</tr>
<tr>
<td>31</td>
<td>1983</td>
<td>1 28.6</td>
<td>17614</td>
<td>46200</td>
<td>17608</td>
<td>454</td>
<td>69 07.8</td>
<td>49444</td>
</tr>
<tr>
<td>32</td>
<td>1984</td>
<td>1 33.5</td>
<td>17602</td>
<td>46219</td>
<td>17596</td>
<td>479</td>
<td>69 09.1</td>
<td>49457</td>
</tr>
<tr>
<td>33</td>
<td>1985</td>
<td>1 37.9</td>
<td>17591</td>
<td>46239</td>
<td>17584</td>
<td>501</td>
<td>69 10.3</td>
<td>49472</td>
</tr>
<tr>
<td>34</td>
<td>1986</td>
<td>1 42.7</td>
<td>17579</td>
<td>46263</td>
<td>17571</td>
<td>525</td>
<td>69 11.6</td>
<td>49490</td>
</tr>
<tr>
<td>35</td>
<td>1987</td>
<td>1 46.3</td>
<td>17572</td>
<td>46285</td>
<td>17564</td>
<td>543</td>
<td>69 12.6</td>
<td>49508</td>
</tr>
<tr>
<td>36</td>
<td>1988</td>
<td>1 51.0</td>
<td>17555</td>
<td>46318</td>
<td>17546</td>
<td>567</td>
<td>69 14.6</td>
<td>49533</td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>D [°]</td>
<td>H [nT]</td>
<td>Z [nT]</td>
<td>X [nT]</td>
<td>Y [nT]</td>
<td>I [°]</td>
<td>F [nT]</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>37</td>
<td>1989</td>
<td>1 55.5</td>
<td>17535</td>
<td>46352</td>
<td>17525</td>
<td>589</td>
<td>69 16.7</td>
<td>49558</td>
</tr>
<tr>
<td>38</td>
<td>1990</td>
<td>1 58.4</td>
<td>17527</td>
<td>46374</td>
<td>17516</td>
<td>604</td>
<td>69 17.8</td>
<td>49575</td>
</tr>
<tr>
<td>39</td>
<td>1991</td>
<td>2 00.6</td>
<td>17513</td>
<td>46398</td>
<td>17502</td>
<td>614</td>
<td>69 19.3</td>
<td>49593</td>
</tr>
<tr>
<td>40</td>
<td>1992</td>
<td>2 03.9</td>
<td>17515</td>
<td>46416</td>
<td>17504</td>
<td>631</td>
<td>69 19.6</td>
<td>49611</td>
</tr>
<tr>
<td>41</td>
<td>1993</td>
<td>2 10.0</td>
<td>17516</td>
<td>46428</td>
<td>17503</td>
<td>662</td>
<td>69 19.8</td>
<td>49622</td>
</tr>
<tr>
<td>42</td>
<td>1994</td>
<td>2 15.9</td>
<td>17512</td>
<td>46456</td>
<td>17498</td>
<td>692</td>
<td>69 20.7</td>
<td>49647</td>
</tr>
<tr>
<td>43</td>
<td>1995</td>
<td>2 21.3</td>
<td>17518</td>
<td>46481</td>
<td>17503</td>
<td>720</td>
<td>69 21.0</td>
<td>49672</td>
</tr>
<tr>
<td>44</td>
<td>1996</td>
<td>2 26.6</td>
<td>17523</td>
<td>46506</td>
<td>17507</td>
<td>747</td>
<td>69 21.2</td>
<td>49698</td>
</tr>
<tr>
<td>45</td>
<td>1997</td>
<td>2 32.9</td>
<td>17519</td>
<td>46539</td>
<td>17502</td>
<td>779</td>
<td>69 22.3</td>
<td>49727</td>
</tr>
<tr>
<td>46</td>
<td>1998</td>
<td>2 39.8</td>
<td>17512</td>
<td>46581</td>
<td>17493</td>
<td>814</td>
<td>69 23.8</td>
<td>49764</td>
</tr>
<tr>
<td>47</td>
<td>1999</td>
<td>2 45.4</td>
<td>17511</td>
<td>46615</td>
<td>17491</td>
<td>842</td>
<td>69 24.7</td>
<td>49796</td>
</tr>
<tr>
<td>48</td>
<td>2000</td>
<td>2 51.9</td>
<td>17507</td>
<td>46657</td>
<td>17485</td>
<td>875</td>
<td>69 25.9</td>
<td>49833</td>
</tr>
<tr>
<td>49</td>
<td>2001</td>
<td>2 57.7</td>
<td>17515</td>
<td>46692</td>
<td>17492</td>
<td>905</td>
<td>69 26.2</td>
<td>49869</td>
</tr>
<tr>
<td>50</td>
<td>2002</td>
<td>3 03.7</td>
<td>17520</td>
<td>46730</td>
<td>17495</td>
<td>936</td>
<td>69 26.9</td>
<td>49906</td>
</tr>
<tr>
<td>51</td>
<td>2003</td>
<td>3 10.8</td>
<td>17519</td>
<td>46777</td>
<td>17492</td>
<td>972</td>
<td>69 28.1</td>
<td>49950</td>
</tr>
<tr>
<td>52</td>
<td>2004</td>
<td>3 16.6</td>
<td>17529</td>
<td>46809</td>
<td>17500</td>
<td>1002</td>
<td>69 28.2</td>
<td>49983</td>
</tr>
<tr>
<td>53</td>
<td>2005</td>
<td>3 22.3</td>
<td>17531</td>
<td>46843</td>
<td>17501</td>
<td>1031</td>
<td>69 28.9</td>
<td>50016</td>
</tr>
<tr>
<td>J 2006.0</td>
<td>0</td>
<td>-1.5</td>
<td>-2</td>
<td>9</td>
<td>-2</td>
<td>-8</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>54</td>
<td>2006</td>
<td>3 29.9</td>
<td>17550</td>
<td>46859</td>
<td>17517</td>
<td>1071</td>
<td>69 28.1</td>
<td>50038</td>
</tr>
<tr>
<td>55</td>
<td>2007</td>
<td>3 36.7</td>
<td>17559</td>
<td>46887</td>
<td>17524</td>
<td>1106</td>
<td>69 28.2</td>
<td>50067</td>
</tr>
<tr>
<td>56</td>
<td>2008</td>
<td>3 43.8</td>
<td>17564</td>
<td>46917</td>
<td>17527</td>
<td>1143</td>
<td>69 28.5</td>
<td>50097</td>
</tr>
</tbody>
</table>

Note: Since 2006 the observatory has stopped introducing the so-called historical corrections. The corrections were related, among other things, with the variable location of the instruments for absolute measurements. In the 2006.0 line we include the jump value J relating to the neglect of historical corrections. The jump values are defined as follows:

\[
\text{jump value } J = \text{old site value} - \text{new site value}
\]
Fig. 19. Secular changes of H, X, Y, Z, F, D and I at Hel.
MONTHLY AND YEARLY MEAN VALUES OF MAGNETIC ELEMENTS

2008

HEL

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MEAN

NORTH COMPONENT: 17000 + ... in nT

All days	524	522	521	525	532	531	532	529	527	525	529	529	527
Quiet days	530	528	527	526	535	533	530	532	530	520	529	531	529
Disturbed days	519	517	512	519	530	532	530	527	524	524	528	530	524

EAST COMPONENT: 1000 + ... in nT

All days	127	131	133	133	136	140	144	146	150	154	157	161	143
Quiet days	124	128	130	134	136	139	142	146	150	157	158	160	142
Disturbed days	129	136	137	138	137	139	142	146	150	153	157	161	144

VERTICAL COMPONENT: 46500 + ... in nT

All days	404	409	412	412	412	415	417	419	422	427	428	431	417
Quiet days	402	408	410	411	410	415	419	418	422	428	428	431	417
Disturbed days	404	408	411	414	413	413	419	420	423	427	429	432	418
Three-hour-range K indices
Hel, January - March, 2008
The limit of K=9 is 550

Day	January		February		March				
-----	---------		---------		--------				
	K	SK		K	SK		K	SK	
1	2101	1001	6	3222	1355	23	5323	4433	27
2	0000	1120	4	4322	3243	23	2222	2323	18
3	0000	0011	2	3223	2443	23	2123	1111	12
4	0000	1112	5	3212	1233	17	2011	1001	6
5	2233	3354	25	1101	1210	7	2212	3231	16
6	3332	3443	25	0011	1232	10	1111	0111	7
7	3223	3123	19	3200	0213	11	1110	0011	5
8	1222	2443	20	3111	1133	14	0013	4331	15
9	3221	1122	14	2000	2123	10	3533	3434	28
10	2111	1212	11	0223	4544	24	3223	3444	25
11	2011	0020	6	3323	3333	23	2232	4432	22
12	0001	2322	10	2222	3333	20	3332	3243	23
13	3111	2342	17	1131	4331	17	2223	3222	18
14	3224	3453	26	2122	3143	18	3322	2434	23
15	2222	3222	17	2223	3332	20	4223	3222	20
16	2233	2333	21	2222	2130	14	2111	2222	13
17	2212	3124	17	0112	2112	10	2111	1321	12
18	3332	2332	21	1012	4434	19	3311	2111	13
19	1123	2422	17	3232	3332	21	0121	3333	16
20	1221	2032	13	1311	1201	10	2112	3333	18
21	1112	1223	13	1112	2331	14	2111	0233	13
22	1110	0110	5	1011	1011	6	2001	2123	11
23	0012	1133	11	0112	1232	12	3322	2222	18
24	0111	2232	12	1011	1222	10	1111	1110	7
25	3322	1042	17	2011	0100	5	0012	2113	10
26	3121	1213	14	0111	1122	9	1133	4454	25
27	1101	1132	10	1111	2352	16	4433	3555	32
28	0111	0023	8	3323	2545	27	4343	4443	29
29	1211	1000	6	4233	3644	29	2211	2234	17
30	1100	0000	2				3212	2213	16
31	0001	2333	12				1101	2021	8
Three-hour-range K indices
Hel, April – June, 2008
The limit of K=9 is 550

<table>
<thead>
<tr>
<th>Day</th>
<th>April K</th>
<th>SK</th>
<th>May K</th>
<th>SK</th>
<th>June K</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1211</td>
<td>8</td>
<td>1112</td>
<td>15</td>
<td>2222</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>0000</td>
<td>1</td>
<td>5212</td>
<td>15</td>
<td>2212</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>2001</td>
<td>4</td>
<td>3233</td>
<td>22</td>
<td>1102</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>0011</td>
<td>15</td>
<td>1223</td>
<td>19</td>
<td>2121</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>2123</td>
<td>23</td>
<td>2131</td>
<td>19</td>
<td>1002</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3443</td>
<td>25</td>
<td>3222</td>
<td>15</td>
<td>1223</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>3322</td>
<td>21</td>
<td>2001</td>
<td>11</td>
<td>2133</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>2213</td>
<td>20</td>
<td>2112</td>
<td>11</td>
<td>3212</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>2233</td>
<td>21</td>
<td>1111</td>
<td>9</td>
<td>1001</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>3222</td>
<td>20</td>
<td>1111</td>
<td>10</td>
<td>1001</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>3112</td>
<td>12</td>
<td>2111</td>
<td>11</td>
<td>1122</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>3223</td>
<td>20</td>
<td>1010</td>
<td>7</td>
<td>1221</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>1112</td>
<td>15</td>
<td>1101</td>
<td>8</td>
<td>1100</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>1100</td>
<td>2</td>
<td>0102</td>
<td>7</td>
<td>1001</td>
<td>17</td>
</tr>
<tr>
<td>15</td>
<td>0001</td>
<td>11</td>
<td>0111</td>
<td>7</td>
<td>3433</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>2223</td>
<td>23</td>
<td>1202</td>
<td>12</td>
<td>2223</td>
<td>22</td>
</tr>
<tr>
<td>17</td>
<td>3212</td>
<td>15</td>
<td>1001</td>
<td>3</td>
<td>2223</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>2222</td>
<td>15</td>
<td>0002</td>
<td>8</td>
<td>3322</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>2111</td>
<td>13</td>
<td>2113</td>
<td>16</td>
<td>1112</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>2111</td>
<td>11</td>
<td>2122</td>
<td>19</td>
<td>2333</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>1101</td>
<td>8</td>
<td>3323</td>
<td>20</td>
<td>1111</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>0002</td>
<td>11</td>
<td>2222</td>
<td>20</td>
<td>2111</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>3343</td>
<td>26</td>
<td>2102</td>
<td>15</td>
<td>2101</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>3333</td>
<td>22</td>
<td>3122</td>
<td>16</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>2222</td>
<td>16</td>
<td>2211</td>
<td>12</td>
<td>3221</td>
<td>19</td>
</tr>
<tr>
<td>26</td>
<td>3122</td>
<td>20</td>
<td>1111</td>
<td>7</td>
<td>3333</td>
<td>23</td>
</tr>
<tr>
<td>27</td>
<td>2112</td>
<td>14</td>
<td>0011</td>
<td>7</td>
<td>3223</td>
<td>19</td>
</tr>
<tr>
<td>28</td>
<td>1122</td>
<td>20</td>
<td>3222</td>
<td>21</td>
<td>1112</td>
<td>13</td>
</tr>
<tr>
<td>29</td>
<td>2211</td>
<td>11</td>
<td>2212</td>
<td>18</td>
<td>2212</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>0111</td>
<td>13</td>
<td>3112</td>
<td>20</td>
<td>1102</td>
<td>10</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>0223</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Three-hour-range K indices
Hel, July – September, 2008
The limit of K=9 is 550

<table>
<thead>
<tr>
<th>Day</th>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SK</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>2112</td>
<td>3101</td>
<td>1010</td>
</tr>
<tr>
<td>2</td>
<td>2001</td>
<td>1010</td>
<td>0001</td>
</tr>
<tr>
<td>3</td>
<td>1001</td>
<td>2211</td>
<td>1011</td>
</tr>
<tr>
<td>4</td>
<td>0001</td>
<td>2211</td>
<td>1011</td>
</tr>
<tr>
<td>5</td>
<td>1223</td>
<td>3322</td>
<td>0001</td>
</tr>
<tr>
<td>6</td>
<td>1111</td>
<td>1110</td>
<td>11-122222</td>
</tr>
<tr>
<td>7</td>
<td>1111</td>
<td>0101</td>
<td>1111</td>
</tr>
<tr>
<td>8</td>
<td>0001</td>
<td>1111</td>
<td>0000</td>
</tr>
<tr>
<td>9</td>
<td>0111</td>
<td>1111</td>
<td>3323</td>
</tr>
<tr>
<td>10</td>
<td>0002</td>
<td>2212</td>
<td>3332</td>
</tr>
<tr>
<td>11</td>
<td>1122</td>
<td>3223</td>
<td>2212</td>
</tr>
<tr>
<td>12</td>
<td>3433</td>
<td>4232</td>
<td>1232</td>
</tr>
<tr>
<td>13</td>
<td>2233</td>
<td>3432</td>
<td>2112</td>
</tr>
<tr>
<td>14</td>
<td>2223</td>
<td>3422</td>
<td>2211</td>
</tr>
<tr>
<td>15</td>
<td>3222</td>
<td>2222</td>
<td>2111</td>
</tr>
<tr>
<td>16</td>
<td>1111</td>
<td>2212</td>
<td>0111</td>
</tr>
<tr>
<td>17</td>
<td>2211</td>
<td>1210</td>
<td>3112</td>
</tr>
<tr>
<td>18</td>
<td>0101</td>
<td>1101</td>
<td>2224</td>
</tr>
<tr>
<td>19</td>
<td>0001</td>
<td>1101</td>
<td>3222</td>
</tr>
<tr>
<td>20</td>
<td>1001</td>
<td>1121</td>
<td>2112</td>
</tr>
<tr>
<td>21</td>
<td>2111</td>
<td>2222</td>
<td>1001</td>
</tr>
<tr>
<td>22</td>
<td>0123</td>
<td>4333</td>
<td>0110</td>
</tr>
<tr>
<td>23</td>
<td>3322</td>
<td>4333</td>
<td>1001</td>
</tr>
<tr>
<td>24</td>
<td>3222</td>
<td>2222</td>
<td>0001</td>
</tr>
<tr>
<td>25</td>
<td>1112</td>
<td>1101</td>
<td>1000</td>
</tr>
<tr>
<td>26</td>
<td>2112</td>
<td>2221</td>
<td>0001</td>
</tr>
<tr>
<td>27</td>
<td>0012</td>
<td>2124</td>
<td>2111</td>
</tr>
<tr>
<td>28</td>
<td>2222</td>
<td>1211</td>
<td>0001</td>
</tr>
<tr>
<td>29</td>
<td>0101</td>
<td>1212</td>
<td>1111</td>
</tr>
<tr>
<td>30</td>
<td>1212</td>
<td>1112</td>
<td>0111</td>
</tr>
<tr>
<td>31</td>
<td>0111</td>
<td>2211</td>
<td>0012</td>
</tr>
</tbody>
</table>
Three-hour-range K indices
Hel, October - December, 2008
The limit of K=9 is 550

<table>
<thead>
<tr>
<th>Day</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SK</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>2222</td>
<td>2323</td>
<td>1010</td>
</tr>
<tr>
<td>2</td>
<td>2223</td>
<td>4333</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>2232</td>
<td>3333</td>
<td>0000</td>
</tr>
<tr>
<td>4</td>
<td>2323</td>
<td>2212</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>2211</td>
<td>1002</td>
<td>0000</td>
</tr>
<tr>
<td>6</td>
<td>1111</td>
<td>0101</td>
<td>0000</td>
</tr>
<tr>
<td>7</td>
<td>0000</td>
<td>1120</td>
<td>0112</td>
</tr>
<tr>
<td>8</td>
<td>1100</td>
<td>0001</td>
<td>3223</td>
</tr>
<tr>
<td>9</td>
<td>0010</td>
<td>0000</td>
<td>4222</td>
</tr>
<tr>
<td>10</td>
<td>0002</td>
<td>1103</td>
<td>1111</td>
</tr>
<tr>
<td>11</td>
<td>2133</td>
<td>5653</td>
<td>0101</td>
</tr>
<tr>
<td>12</td>
<td>4322</td>
<td>2323</td>
<td>1010</td>
</tr>
<tr>
<td>13</td>
<td>3122</td>
<td>1232</td>
<td>0000</td>
</tr>
<tr>
<td>14</td>
<td>1011</td>
<td>1121</td>
<td>0000</td>
</tr>
<tr>
<td>15</td>
<td>3222</td>
<td>1122</td>
<td>1100</td>
</tr>
<tr>
<td>16</td>
<td>1011</td>
<td>0011</td>
<td>3222</td>
</tr>
<tr>
<td>17</td>
<td>0000</td>
<td>1000</td>
<td>1120</td>
</tr>
<tr>
<td>18</td>
<td>0000</td>
<td>0010</td>
<td>0000</td>
</tr>
<tr>
<td>19</td>
<td>1112</td>
<td>2332</td>
<td>0000</td>
</tr>
<tr>
<td>20</td>
<td>1000</td>
<td>1112</td>
<td>0100</td>
</tr>
<tr>
<td>21</td>
<td>2111</td>
<td>1012</td>
<td>0001</td>
</tr>
<tr>
<td>22</td>
<td>0001</td>
<td>1232</td>
<td>0000</td>
</tr>
<tr>
<td>23</td>
<td>11-1-1-1110</td>
<td>2110</td>
<td>0010</td>
</tr>
<tr>
<td>24</td>
<td>011-11000</td>
<td>-1</td>
<td>0000</td>
</tr>
<tr>
<td>25</td>
<td>0001</td>
<td>0111</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>0221</td>
<td>1201</td>
<td>3322</td>
</tr>
<tr>
<td>27</td>
<td>1001</td>
<td>0000</td>
<td>2112</td>
</tr>
<tr>
<td>28</td>
<td>0122</td>
<td>1221</td>
<td>1111</td>
</tr>
<tr>
<td>29</td>
<td>2332</td>
<td>3443</td>
<td>0111</td>
</tr>
<tr>
<td>30</td>
<td>3223</td>
<td>2532</td>
<td>1000</td>
</tr>
<tr>
<td>31</td>
<td>2221</td>
<td>1232</td>
<td>3323</td>
</tr>
</tbody>
</table>
Fig. 20. K-indices in graphical form, Hel 2008.
Fig. 21. Daily mean data plot for Hel 2008.
Fig. 22. Hourly mean data plot of X component for Hel 2008.
Fig. 23. Hourly mean data plot of Y component for Hel 2008.
Fig. 24. Hourly mean data plot of Z component for Hel 2008.
Fig. 25. Hourly mean data plot of F component for Hel 2008.
Tables and plots for Hornsund Observatory

Fig. 26. Base values, Hornsund 2008.
Annual mean values of magnetic elements in Hornsund Observatory

<table>
<thead>
<tr>
<th>Year</th>
<th>D [°]</th>
<th>H [nT]</th>
<th>Z [nT]</th>
<th>X [nT]</th>
<th>Y [nT]</th>
<th>I [°]</th>
<th>F [nT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>-0.32</td>
<td>8384</td>
<td>53447</td>
<td>8384</td>
<td>-79</td>
<td>81 05.1</td>
<td>54101</td>
</tr>
<tr>
<td>1980</td>
<td>-0.14</td>
<td>8370</td>
<td>53447</td>
<td>8370</td>
<td>-35</td>
<td>81 06.0</td>
<td>54098</td>
</tr>
<tr>
<td>1981</td>
<td>-0.09</td>
<td>8351</td>
<td>53449</td>
<td>8351</td>
<td>-23</td>
<td>81 07.2</td>
<td>54097</td>
</tr>
<tr>
<td>1982</td>
<td>-0.09</td>
<td>8319</td>
<td>53481</td>
<td>8319</td>
<td>-23</td>
<td>81 09.5</td>
<td>54124</td>
</tr>
<tr>
<td>1983</td>
<td>-0.02</td>
<td>8295</td>
<td>53457</td>
<td>8295</td>
<td>-5</td>
<td>81 10.8</td>
<td>54097</td>
</tr>
<tr>
<td>1984</td>
<td>0.07</td>
<td>8266</td>
<td>53439</td>
<td>8266</td>
<td>19</td>
<td>81 12.4</td>
<td>54075</td>
</tr>
<tr>
<td>1985</td>
<td>0.14</td>
<td>8238</td>
<td>53405</td>
<td>8238</td>
<td>34</td>
<td>81 13.9</td>
<td>54037</td>
</tr>
<tr>
<td>1986</td>
<td>0.20</td>
<td>8213</td>
<td>53392</td>
<td>8213</td>
<td>49</td>
<td>81 15.3</td>
<td>54020</td>
</tr>
<tr>
<td>1987</td>
<td>0.25</td>
<td>8193</td>
<td>53360</td>
<td>8193</td>
<td>61</td>
<td>81 16.3</td>
<td>53985</td>
</tr>
<tr>
<td>1988</td>
<td>0.34</td>
<td>8168</td>
<td>53368</td>
<td>8168</td>
<td>82</td>
<td>81 17.9</td>
<td>53989</td>
</tr>
<tr>
<td>1989</td>
<td>0.40</td>
<td>8148</td>
<td>53369</td>
<td>8147</td>
<td>97</td>
<td>81 19.2</td>
<td>53987</td>
</tr>
<tr>
<td>1990</td>
<td>0.47</td>
<td>8122</td>
<td>53360</td>
<td>8121</td>
<td>112</td>
<td>81 20.7</td>
<td>53975</td>
</tr>
<tr>
<td>1991</td>
<td>0.53</td>
<td>8107</td>
<td>53355</td>
<td>8106</td>
<td>125</td>
<td>81 21.6</td>
<td>53967</td>
</tr>
<tr>
<td>1992</td>
<td>1.01</td>
<td>8088</td>
<td>53352</td>
<td>8087</td>
<td>144</td>
<td>81 22.8</td>
<td>53962</td>
</tr>
<tr>
<td>1993</td>
<td>1.12</td>
<td>8065</td>
<td>53356</td>
<td>8063</td>
<td>171</td>
<td>81 24.3</td>
<td>53962</td>
</tr>
<tr>
<td>1994</td>
<td>1.25</td>
<td>8044</td>
<td>53374</td>
<td>8041</td>
<td>201</td>
<td>81 25.8</td>
<td>53977</td>
</tr>
<tr>
<td>1995</td>
<td>1.38</td>
<td>8038</td>
<td>53374</td>
<td>8035</td>
<td>230</td>
<td>81 26.1</td>
<td>53976</td>
</tr>
<tr>
<td>1996</td>
<td>1.51</td>
<td>8023</td>
<td>53385</td>
<td>8019</td>
<td>260</td>
<td>81 27.2</td>
<td>53985</td>
</tr>
<tr>
<td>1997</td>
<td>2.07</td>
<td>8004</td>
<td>53406</td>
<td>7999</td>
<td>296</td>
<td>81 28.6</td>
<td>54003</td>
</tr>
<tr>
<td>1998</td>
<td>2.24</td>
<td>8001</td>
<td>53440</td>
<td>7994</td>
<td>335</td>
<td>81 29.1</td>
<td>54036</td>
</tr>
<tr>
<td>1999</td>
<td>2.39</td>
<td>7998</td>
<td>53471</td>
<td>7989</td>
<td>370</td>
<td>81 29.6</td>
<td>54066</td>
</tr>
<tr>
<td>2000</td>
<td>2.55</td>
<td>7996</td>
<td>53504</td>
<td>7986</td>
<td>408</td>
<td>81 30.0</td>
<td>54098</td>
</tr>
<tr>
<td>2001</td>
<td>3.12</td>
<td>7992</td>
<td>53542</td>
<td>7979</td>
<td>447</td>
<td>81 30.6</td>
<td>54135</td>
</tr>
<tr>
<td>2002</td>
<td>3.29</td>
<td>7989</td>
<td>53585</td>
<td>7974</td>
<td>487</td>
<td>81 31.2</td>
<td>54177</td>
</tr>
<tr>
<td>2003</td>
<td>3.49</td>
<td>7965</td>
<td>53646</td>
<td>7947</td>
<td>532</td>
<td>81 33.3</td>
<td>54234</td>
</tr>
<tr>
<td>2004</td>
<td>4.04</td>
<td>7961</td>
<td>53675</td>
<td>7941</td>
<td>565</td>
<td>81 33.8</td>
<td>54262</td>
</tr>
<tr>
<td>2005</td>
<td>4.20</td>
<td>7953</td>
<td>53707</td>
<td>7930</td>
<td>602</td>
<td>81 34.6</td>
<td>54293</td>
</tr>
<tr>
<td>2006</td>
<td>4.36</td>
<td>7958</td>
<td>53727</td>
<td>7932</td>
<td>639</td>
<td>81 34.5</td>
<td>54314</td>
</tr>
<tr>
<td>2007</td>
<td>4.51</td>
<td>7950</td>
<td>53757</td>
<td>7922</td>
<td>673</td>
<td>81 35.2</td>
<td>54342</td>
</tr>
<tr>
<td>2008</td>
<td>5.07</td>
<td>7941</td>
<td>53785</td>
<td>7909</td>
<td>710</td>
<td>81 36.1</td>
<td>54368</td>
</tr>
</tbody>
</table>
Fig. 27. Secular changes of H, X, Y, Z, F, D and I at Hornsund.
MONTHLY AND YEARLY MEAN VALUES OF MAGNETIC ELEMENTS

Hornsund 2008

<table>
<thead>
<tr>
<th></th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTH COMPONENT: 7500 + ... in nT</td>
<td></td>
</tr>
<tr>
<td>All days</td>
<td>398</td>
<td>396</td>
<td>398</td>
<td>410</td>
<td>424</td>
<td>425</td>
<td>424</td>
<td>417</td>
<td>409</td>
<td>402</td>
<td>403</td>
<td>398</td>
<td>409</td>
</tr>
<tr>
<td>Quiet days</td>
<td>414</td>
<td>418</td>
<td>416</td>
<td>417</td>
<td>425</td>
<td>428</td>
<td>421</td>
<td>419</td>
<td>411</td>
<td>411</td>
<td>409</td>
<td>408</td>
<td>416</td>
</tr>
<tr>
<td>Disturbed days</td>
<td>372</td>
<td>369</td>
<td>352</td>
<td>388</td>
<td>424</td>
<td>418</td>
<td>417</td>
<td>413</td>
<td>389</td>
<td>370</td>
<td>386</td>
<td>368</td>
<td>389</td>
</tr>
</tbody>
</table>

| EAST COMPONENT: 500 + ... in nT |
All days	196	197	202	201	200	204	210	213	219	223	228	230	210
Quiet days	192	194	198	200	200	205	209	213	217	222	225	228	209
Disturbed days	202	196	218	213	197	202	214	215	222	227	236	237	215

| VERTICAL COMPONENT: 53500 + ... in nT |
All days	279	282	290	286	277	283	275	281	292	293	294	293	285
Quiet days	269	271	281	285	274	276	284	278	282	287	286	289	280
Disturbed days	282	303	307	292	280	288	269	287	305	302	309	301	294
Three-hour-range K indices
Hornsund, January - March, 2008
The limit of K=9 is 2500

<table>
<thead>
<tr>
<th>Day</th>
<th>January</th>
<th>February</th>
<th>March</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SK</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>1221 1210</td>
<td>10</td>
<td>4333 1245</td>
</tr>
<tr>
<td>2</td>
<td>1210 0022</td>
<td>8</td>
<td>2442 3375</td>
</tr>
<tr>
<td>3</td>
<td>0101 0034</td>
<td>9</td>
<td>5443 2435</td>
</tr>
<tr>
<td>4</td>
<td>0001 0033</td>
<td>7</td>
<td>3343 2256</td>
</tr>
<tr>
<td>5</td>
<td>1233 3255</td>
<td>24</td>
<td>3312 2122</td>
</tr>
<tr>
<td>6</td>
<td>2442 3465</td>
<td>30</td>
<td>1222 1353</td>
</tr>
<tr>
<td>7</td>
<td>4443 3223</td>
<td>25</td>
<td>3211 1214</td>
</tr>
<tr>
<td>8</td>
<td>2343 2555</td>
<td>29</td>
<td>4222 3024</td>
</tr>
<tr>
<td>9</td>
<td>4333 1132</td>
<td>20</td>
<td>1111 2122</td>
</tr>
<tr>
<td>10</td>
<td>2222 1115</td>
<td>16</td>
<td>1223 4355</td>
</tr>
<tr>
<td>11</td>
<td>5222 1030</td>
<td>15</td>
<td>2443 3643</td>
</tr>
<tr>
<td>12</td>
<td>0023 1212</td>
<td>11</td>
<td>2453 3264</td>
</tr>
<tr>
<td>13</td>
<td>2322 2344</td>
<td>22</td>
<td>1343 3552</td>
</tr>
<tr>
<td>14</td>
<td>3464 3464</td>
<td>34</td>
<td>2343 3165</td>
</tr>
<tr>
<td>15</td>
<td>2443 3224</td>
<td>24</td>
<td>2444 4553</td>
</tr>
<tr>
<td>16</td>
<td>2464 3655</td>
<td>35</td>
<td>1443 2252</td>
</tr>
<tr>
<td>17</td>
<td>3333 3244</td>
<td>25</td>
<td>0143 2103</td>
</tr>
<tr>
<td>18</td>
<td>3553 3333</td>
<td>28</td>
<td>1233 3355</td>
</tr>
<tr>
<td>19</td>
<td>2353 3542</td>
<td>27</td>
<td>3243 3354</td>
</tr>
<tr>
<td>20</td>
<td>1443 2154</td>
<td>24</td>
<td>1333 2200</td>
</tr>
<tr>
<td>21</td>
<td>2233 2444</td>
<td>24</td>
<td>1233 3432</td>
</tr>
<tr>
<td>22</td>
<td>3222 2120</td>
<td>14</td>
<td>0122 2100</td>
</tr>
<tr>
<td>23</td>
<td>0122 3045</td>
<td>17</td>
<td>0232 2253</td>
</tr>
<tr>
<td>24</td>
<td>1322 2323</td>
<td>18</td>
<td>1123 1222</td>
</tr>
<tr>
<td>25</td>
<td>2442 1063</td>
<td>22</td>
<td>1223 1100</td>
</tr>
<tr>
<td>26</td>
<td>3243 2213</td>
<td>20</td>
<td>0222 1113</td>
</tr>
<tr>
<td>27</td>
<td>1311 1253</td>
<td>17</td>
<td>1321 3452</td>
</tr>
<tr>
<td>28</td>
<td>1222 1034</td>
<td>15</td>
<td>4433 3556</td>
</tr>
<tr>
<td>29</td>
<td>1223 2001</td>
<td>11</td>
<td>6344 3736</td>
</tr>
<tr>
<td>30</td>
<td>1111 1000</td>
<td>5</td>
<td>3333 3233</td>
</tr>
<tr>
<td>31</td>
<td>0000 0124</td>
<td>7</td>
<td>2212 2252</td>
</tr>
</tbody>
</table>
Three-hour-range K indices
Hornsund, April - June, 2008
The limit of K=9 is 2500

<table>
<thead>
<tr>
<th>Day</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SK</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>2322</td>
<td>1210</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>0110</td>
<td>0020</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1001</td>
<td>2100</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0221</td>
<td>3445</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>2233</td>
<td>3733</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>3443</td>
<td>3252</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>2443</td>
<td>2653</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>2233</td>
<td>4334</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>2344</td>
<td>3153</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>2343</td>
<td>3255</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>2322</td>
<td>3321</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>2344</td>
<td>3153</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>2233</td>
<td>3541</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>1212</td>
<td>0100</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>0102</td>
<td>2124</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>1234</td>
<td>3253</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>2223</td>
<td>3220</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>1343</td>
<td>3212</td>
<td>19</td>
</tr>
<tr>
<td>19</td>
<td>2232</td>
<td>2212</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>2211</td>
<td>2431</td>
<td>16</td>
</tr>
<tr>
<td>21</td>
<td>2222</td>
<td>1210</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td>1112</td>
<td>1141</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>3454</td>
<td>4632</td>
<td>31</td>
</tr>
<tr>
<td>24</td>
<td>5455</td>
<td>4344</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>2433</td>
<td>3252</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td>4433</td>
<td>3425</td>
<td>28</td>
</tr>
<tr>
<td>27</td>
<td>2222</td>
<td>2321</td>
<td>16</td>
</tr>
<tr>
<td>28</td>
<td>2223</td>
<td>5455</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>2342</td>
<td>2253</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>1212</td>
<td>2541</td>
<td>18</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Three-hour-range K indices

Hornsund, July - September, 2008

The limit of K=9 is 2500

<table>
<thead>
<tr>
<th>Day</th>
<th>July</th>
<th></th>
<th>August</th>
<th></th>
<th>September</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SK</td>
<td>K</td>
<td>SK</td>
<td>K</td>
<td>SK</td>
</tr>
<tr>
<td>1</td>
<td>2233</td>
<td>2121</td>
<td>1221</td>
<td>2123</td>
<td>1120</td>
<td>2122</td>
</tr>
<tr>
<td>2</td>
<td>2212</td>
<td>2022</td>
<td>1011</td>
<td>2002</td>
<td>0111</td>
<td>2100</td>
</tr>
<tr>
<td>3</td>
<td>1111</td>
<td>2111</td>
<td>1111</td>
<td>1212</td>
<td>0333</td>
<td>2215</td>
</tr>
<tr>
<td>4</td>
<td>0101</td>
<td>2310</td>
<td>1111</td>
<td>1112</td>
<td>7753</td>
<td>3335</td>
</tr>
<tr>
<td>5</td>
<td>2233</td>
<td>3224</td>
<td>0121</td>
<td>2100</td>
<td>2323</td>
<td>2133</td>
</tr>
<tr>
<td>6</td>
<td>3222</td>
<td>2121</td>
<td>1122</td>
<td>2132</td>
<td>4322</td>
<td>3212</td>
</tr>
<tr>
<td>7</td>
<td>1221</td>
<td>0003</td>
<td>2211</td>
<td>1113</td>
<td>3333</td>
<td>3252</td>
</tr>
<tr>
<td>8</td>
<td>1001</td>
<td>1122</td>
<td>1211</td>
<td>1111</td>
<td>2343</td>
<td>2553</td>
</tr>
<tr>
<td>9</td>
<td>1111</td>
<td>2111</td>
<td>2433</td>
<td>2436</td>
<td>2433</td>
<td>2003</td>
</tr>
<tr>
<td>10</td>
<td>1113</td>
<td>2222</td>
<td>2343</td>
<td>3334</td>
<td>2221</td>
<td>1143</td>
</tr>
<tr>
<td>11</td>
<td>3222</td>
<td>3212</td>
<td>2333</td>
<td>3221</td>
<td>1210</td>
<td>0123</td>
</tr>
<tr>
<td>12</td>
<td>3545</td>
<td>3333</td>
<td>2343</td>
<td>3212</td>
<td>3110</td>
<td>1000</td>
</tr>
<tr>
<td>13</td>
<td>2333</td>
<td>3543</td>
<td>2322</td>
<td>2132</td>
<td>0010</td>
<td>0000</td>
</tr>
<tr>
<td>14</td>
<td>2344</td>
<td>3533</td>
<td>2311</td>
<td>2201</td>
<td>0112</td>
<td>1134</td>
</tr>
<tr>
<td>15</td>
<td>2333</td>
<td>3122</td>
<td>3212</td>
<td>1110</td>
<td>2344</td>
<td>4353</td>
</tr>
<tr>
<td>16</td>
<td>2332</td>
<td>1234</td>
<td>0123</td>
<td>2122</td>
<td>1333</td>
<td>2653</td>
</tr>
<tr>
<td>17</td>
<td>3322</td>
<td>1220</td>
<td>3212</td>
<td>2212</td>
<td>3311</td>
<td>0011</td>
</tr>
<tr>
<td>18</td>
<td>2322</td>
<td>2211</td>
<td>2335</td>
<td>4354</td>
<td>1232</td>
<td>3243</td>
</tr>
<tr>
<td>19</td>
<td>1101</td>
<td>1003</td>
<td>3333</td>
<td>3431</td>
<td>0121</td>
<td>2122</td>
</tr>
<tr>
<td>20</td>
<td>1111</td>
<td>2022</td>
<td>2323</td>
<td>2210</td>
<td>0221</td>
<td>1100</td>
</tr>
<tr>
<td>21</td>
<td>2223</td>
<td>3221</td>
<td>1122</td>
<td>2221</td>
<td>0001</td>
<td>1001</td>
</tr>
<tr>
<td>22</td>
<td>1233</td>
<td>4244</td>
<td>2111</td>
<td>1111</td>
<td>3311</td>
<td>1000</td>
</tr>
<tr>
<td>23</td>
<td>4443</td>
<td>5432</td>
<td>2220</td>
<td>2003</td>
<td>2212</td>
<td>2101</td>
</tr>
<tr>
<td>24</td>
<td>4332</td>
<td>3244</td>
<td>1002</td>
<td>1002</td>
<td>1212</td>
<td>2100</td>
</tr>
<tr>
<td>25</td>
<td>2322</td>
<td>2013</td>
<td>1011</td>
<td>1001</td>
<td>0001</td>
<td>1023</td>
</tr>
<tr>
<td>26</td>
<td>2222</td>
<td>2231</td>
<td>0001</td>
<td>2011</td>
<td>1311</td>
<td>2000</td>
</tr>
<tr>
<td>27</td>
<td>1112</td>
<td>2133</td>
<td>1311</td>
<td>2010</td>
<td>0020</td>
<td>1022</td>
</tr>
<tr>
<td>28</td>
<td>2333</td>
<td>2211</td>
<td>1102</td>
<td>1112</td>
<td>1122</td>
<td>2000</td>
</tr>
<tr>
<td>29</td>
<td>1221</td>
<td>1113</td>
<td>1221</td>
<td>1110</td>
<td>0222</td>
<td>2003</td>
</tr>
<tr>
<td>30</td>
<td>2322</td>
<td>1121</td>
<td>0222</td>
<td>0000</td>
<td>0120</td>
<td>2203</td>
</tr>
<tr>
<td>31</td>
<td>1112</td>
<td>2111</td>
<td>0011</td>
<td>3123</td>
<td>1111</td>
<td>3123</td>
</tr>
</tbody>
</table>
Three-hour-range K indices
Hornsund, October - December, 2008
The limit of K=9 is 2500

<table>
<thead>
<tr>
<th>Day</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SK</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>2223</td>
<td>3212</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>3333</td>
<td>3253</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>2344</td>
<td>3345</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>3443</td>
<td>2212</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>2422</td>
<td>2012</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>0222</td>
<td>1000</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1132</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>1100</td>
<td>0000</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0020</td>
<td>1000</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>0111</td>
<td>1002</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>1243</td>
<td>4653</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>3332</td>
<td>3654</td>
<td>29</td>
</tr>
<tr>
<td>13</td>
<td>2233</td>
<td>2152</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>2222</td>
<td>2231</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>2222</td>
<td>2414</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>3221</td>
<td>1121</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>0011</td>
<td>1120</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>0000</td>
<td>0010</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1112</td>
<td>2232</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>1120</td>
<td>1112</td>
<td>9</td>
</tr>
<tr>
<td>21</td>
<td>2221</td>
<td>1102</td>
<td>11</td>
</tr>
<tr>
<td>22</td>
<td>0111</td>
<td>1232</td>
<td>11</td>
</tr>
<tr>
<td>23</td>
<td>2222</td>
<td>1000</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>0310</td>
<td>1000</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>0100</td>
<td>0001</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>0331</td>
<td>1101</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>3111</td>
<td>0000</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>0123</td>
<td>1112</td>
<td>11</td>
</tr>
<tr>
<td>29</td>
<td>3442</td>
<td>2663</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>2433</td>
<td>3634</td>
<td>28</td>
</tr>
<tr>
<td>31</td>
<td>2233</td>
<td>1143</td>
<td>19</td>
</tr>
</tbody>
</table>
Fig. 28. K-indices in graphical form, Hornsund 2008.
Fig. 29. Daily mean data plot for Hornsund 2008.
Fig. 30. Hourly mean data plot of X component for Hornsund.
Fig. 31. Hourly mean data plot of Y component for Hornsund.
Fig. 32. Hourly mean data plot of Z component for Hornsund.
List of Yearbooks from Polish Geomagnetic Observatories

Below is the list of yearbooks with the results from the Polish geomagnetic observatories. Since the year 2006, one joint yearbook has been published in place of individual yearbooks from each observatory. The present edition is an activity report, and refers the reader to the internet where one-minute data are available. Most of the issues listed below are still available from the Institute of Geophysics.

I. Results of Geomagnetic Observations Belsk, Hel, Hornsund (since 2006)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

2006 – no C-100 (402)

2007 – no C-101 (408)

II. Results of Geomagnetic Observations, Belsk Geophysical Observatory (1966-2005)

Published in

Materiały i Prace Zakładu Geofizyki PAN:

1970 – no 50; 1971 – no 57; 1972 – no 70; 1973 – no 76;

1974 – no 88

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

1975 – no C-2 (107); 1976 – no C-4 (114); 1977 – no C-5 (125);

1978 – no C-8 (133); 1979 – no C-9 (139); 1980 – no C-10- (144);

1981 – no C-13 (159); 1982 – no C-17 (166); 1983 – no C-20 (180);

1984 – no C-23 (187); 1985 – no C-26 (196); 1986 – no C-29 (205);

1987 – no C-34 (218); 1988 – no C-37 (227); 1989 – no C-38 (228);
III. Results of Geomagnetic Observations, Hel Geophysical Observatory (1958-2005)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

1958-1965 – no C-41 (241); 1966-1970 – no C-6 (127);
1971-1975 – no C-7 (128); 1976-1979 – no C-11 (154);
1980-1981 – no C-16 (165) 1982 – no C-18 (170);
1983 – no C-19 (179); 1984 – no C-24 (128); 1985 – no C-25 (195);
1986 – no C-30 (206); 1987 – no C-33 (217); 1988 – no C-36 (226);
1989 – no C-39 (239); 1990 – no C-42 (242); 1991 – no C-46 (251);
1992 – no C-50 (260); 1993 – no C-52 (268); 1994 – no C-56 (278);
1995 – no C-59 (288); 1996 – no C-62 (297); 1997 – no C-67 (304);
1998 – no C-71 (313); 1999 – no C-76 (320); 2000 – no C-81 (330);
2001 – no C-84 (345); 2002 – no C-87 (358); 2001 – no C-84 (345);
2003 – no C-91 (370); 2004 – no C-94 (381); 2005 – no C-98 (394)

IV. Results of Geomagnetic Observations, Polish Polar Station Hornsund, Spitsbergen (1978-2005)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

1978-1979 – no C-14 (163); 1980-1981 – no C-27 (199);
1982-1983 – no C-31 (210); 1984-1985 – no C-43 (243);
1986-1987 – no C-47 (254);
1990-1991 – no C-53 (272);
1994-1995 – no C-64 (301);
1997 – no C-69 (311);
2000 – no C-80 (329);
2003 – no C-90 (369);

1988-1989 – no C-48 (256);
1992-1993 – no C-57 (286);
1996 – no C-66 (303);
1998 – no C-72 (315);
2001 – no C-83 (344);
2004 – no C-93 (380);

1999 – no C-75 (319);
2002 – no C-86 (357);
2005 – no C-97 (393);

V. Results of Geomagnetic Observations, Polish Antarctic Station Arctowski (1978-1995)

Published in

1978-1979 – no C-21 (181);
1982-1983 – no C-28 (202);
1986-1987 – no C-35 (225);
1990-1991 – no C-54 (276);
1994-1995 – no C-63 (300)

1980-1981 – no C-22 (182);
1984-1985 – no C-32 (212);
1988-1989 – no C-44 (244);
1992-1993 – no C-60 (292);

VI. Yearbooks from Świdere Observatory (1937-1967)

Annuaire Magnetiques (Roczniki magnetyczne) for the years 1937-1967 were published in *Travaux de l’Observatoire Geophysique de St. Kalinowski a Swider* (*Prace Obserwatorium Geofizycznego im. St. Kalinowskiego w Świdrze*).