

AUSTRALIAN GEOMAGNETISM REPORT 2004

MAGNETIC OBSERVATORIES

VOLUME 52

Department of Industry, Tourism and Resources

Department Minister: The Hon. Ian Macfarlane MP Parliamentary Secretary: The Hon. Bob Baldwin MP

Department Secretary: Mark Paterson

Geoscience Australia

Chief Executive Officer: Dr Neil Williams

Geospatial and Earth Monitoring Division

Chief of Division: Dr Chris Pigram

Australian Geomagnetism Report 2004

Volume 52

Geomagnetism
Earth Monitoring Group
Geoscience Australia
G.P.O. Box 378
Canberra, A.C.T., 2601
AUSTRALIA

Australian Government

Geoscience Australia

Magnetic results for 2004

Kakadu

Charters Towers

Learmonth

Alice Springs

Gnangara

Canberra

Macquarie Island

Casey

Mawson

– and –

Australian Repeat Station Network

Compiled and edited by P.A. Hopgood with contributions by
A.M. Lewis, P.G. Crosthwaite, L. Wang and N. Bartzis

Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore you should not rely solely on this information when making a commercial decision.

This work is copyright. Apart from any fair dealings for the purpose of study, research, criticism or review, as permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission. Copyright is the responsibility of the Chief Executive Officer, Geoscience Australia. Requests and enquiries should be directed to the Chief Executive Officer, Geoscience Australia, GPO Box 378 Canberra ACT 2601.

ISSN: 1447-5146

© Copyright Commonwealth of Australia 2006

(Released: 7 July 2006)

During 2004 Geoscience Australia operated geomagnetic observatories at **Kakadu** and **Alice Springs** in the Northern Territory, **Charters Towers** in Queensland, **Learmonth** and **Gnangara** in Western Australia, **Canberra** in the Australian Capital Territory, **Macquarie Island**, Tasmania, in the sub-Antarctic, and **Casey** and **Mawson** in the Australian Antarctic Territory.

The operations at Macquarie Island and Casey were the joint responsibility of the Australian Antarctic Division of the Commonwealth Department of the Environment and Heritage and GA. Operations at Mawson were the joint responsibility of the Australian Bureau of Meteorology of the Commonwealth Department of the Environment and Heritage and GA.

The absolute magnetometers in routine service at the Canberra Magnetic Observatory also served as the Australian Reference. The calibration of these instruments can be traced to International Standards. Absolute magnetometers at all the other Australian observatories are referenced against those at Canberra

Magnetic mean value data at resolutions of 1-minute and 1-hour were provided to the World Data Centres for Geomagnetism at Boulder, USA (WDC-A) and at Copenhagen, Denmark (WDC-C1), as well as to the INTERMAGNET program. K indices, principal magnetic storms and rapid variations were scaled with computer assistance, for the Canberra and Gnangara observatories. The scaled data were provided regularly to the International Service of Geomagnetic Indices. K indices were digitally scaled for the Mawson observatory.

K indices from Canberra contributed to the southern hemisphere Ks index and the global Kp, am and aa indices, while those from Gnangara contributed to the global am index.

Seven repeat stations were re-occupied during a field survey within continental Australia in April and May 2004.

To assist the geomagnetism program in Indonesia, data were routinely received from the Tangerang and Tondano observatories for processing. These observatories were most recently upgraded by GA's Geomagnetism personnel in 2001 under an AusAID grant that also included the purchase of instrumentation and the training of staff from Indonesia's national meteorological and geophysical organisation, Badan Meteorologi & Geofisika (BMG).

This report describes instrumentation and activities, and presents monthly and annual mean magnetic values, plots of hourly mean magnetic values and K indices at the magnetic observatories and repeat stations operated by GA during calendar year 2004.

ACRONYMS and ABBREVIATIONS

AAD	Australian Antarctic Division	I	Magnetic Inclination (dip)
ACRES	Australian Centre for Remote Sensing	INTER-	International Real-time Magnetic
ACT	Australian Capital Territory	MAGNET	observatory Network
A/D	Analogue to Digital (data conversion)	IAGA	International Association of Geomagnetism
ADAM	Data acquisition module produced by	IBM	and Aeronomy International Business Machines
	Advantech Co. Ltd.	IGRF	International Geomagnetic Reference Field
AGR	Australian Geomagnetism Report	IGY	International Geophysical Year (1957-58)
AGRF	Australian Geomagnetic Reference Field	IPGP	Institute de Physique du Globe de Paris
AGSO	Australian Geological Survey Organisation (formerly BMR)	IPS	IPS Radio & Space Services (formerly the
AMO	Automatic Magnetic Observatory	IGGI	Ionospheric Prediction Service)
AMSL	Above Mean Sea Level	ISGI	International Service of Geomagnetic Indices
ANARE	Australian National Antarctic Research Expedition	K	kennziffer (German: logarithmic index; code no.) Index of geomagnetic activity.
ANARESAT	ANARE satellite (communication)	KDU	Kakadu, N.T. (Magnetic Observatory)
ASP	- Alice Springs (Magnetic Observatory)	LRM	Learmonth, W.A. (Magnetic Obsv'ty)
	- Atmospheric & Space Physics (a program of the AAD)	LSO	Learmonth Solar Observatory
AusAID	Australian Agency for International	mA	milli-Amperes
AusAiD	Development	MAW	Mawson (Magnetic Observatory)
BGS	British Geological Survey (Edinburgh)	MCQ	Macquarie Is. (Magnetic Observatory)
BMR	Bureau of Mineral Resources, Geology, and	MGO	Mundaring Geophysical Observatory
	Geophysics (Now Geoscience Australia)	MNS	Magnetometer Nuclear Survey (PPM)
BMG	Badan Meteorologi dan Geofisika	nT	nanoTesla
	(Indonesia)	N.T.	Northern Territory
BoM	(Australian) Bureau of Meteorology	OIC	Officer in Charge
CD-ROM	Compact Disk - Read Only Memory	PC	· ·
CNB	Canberra (Magnetic Observatory)		Personal Computer (IBM-compatible)
CODATA	Committee on Data for Science and Technology	PGR PPM	Proton Gyromagnetic Ratio Proton Procession Magnetometer
CSIRO	Commonwealth Scientific and Industrial	PVC	poly-vinyl chloride (plastic)
	Research Organisation	PVM	Proton Vector Magnetometer
CSY	Casey (Variation Station)	QHM	Quartz Horizontal Magnetometer
CTA	Charters Towers (Magnetic Observatory)	Qld.	Queensland
D	Magnetic Declination (variation)	RCF	Ring-core fluxgate (magnetometer)
DC	Direct Current	SC	Sudden (storm) commencement
DEH	Department of the Environment and	sfe	Solar flare effect
DDM	Heritage	SSC	Sudden storm commencement
DIM	Declination & Inclination Magnetometer (D,I-fluxgate magnetometer)	Tas.	Tasmania
DMI	Danish Meteorological Institute	UPS	Uninterruptible Power Supply
DOS	Disk operating system (for the PC)	UT/UTC	Universal Time Coordinated
DVS	Davis (Variation Station)	W.A.	Western Australia
EDA	EDA Instruments Inc., Canada	WDC	World Data Centre
e-mail	electronic mail	WWW	World Wide Web (Internet)
F	Total magnetic intensity	X	North magnetic intensity
ftp	file transfer protocol	Y	East magnetic intensity
GA	Geoscience Australia	Z	Vertical magnetic intensity
GIN	Geomagnetic Information Node		
GNA	Gnangara (Magnetic Observatory)		
GPS	Global Positioning System		
GSM	GEM Systems magnetometer		
H	Horizontal magnetic intensity		
HDD	Hard disk drive (in a PC)		
		ı	

SUMMARYIII	CHARTERS TOWERS OBSERVATORY	17
A CDONWAG AND ADDRESS A SHONG IN	VARIOMETERS	17
ACRONYMS AND ABBREVIATIONSIV	ABSOLUTE INSTRUMENTS AND CORRECTIONS	18
CONTENTED	BASELINES	18
CONTENTSV	OPERATIONS	18
	SIGNIFICANT EVENTS IN 2004	18
Part 1	Data losses in 2004	
	CHARTERS TOWERS ANNUAL MEAN VALUES	
ACTIVITIES AND SERVICES 1	MONTHLY AND ANNUAL MEAN VALUES	
	HOURLY MEAN VALUES	
GEOMAGNETIC OBSERVATORIES	DISTRIBUTION OF CTA DATA	27
ANTARCTIC OPERATIONS		
MAGNETIC REPEAT STATION NETWORK	LEARMONTH OBSERVATORY	27
CALIBRATION OF COMPASSES	VARIOMETERS	27
NATIONAL MAGNETOMETER CALIBRATION FACILITY . 1	ABSOLUTE INSTRUMENTS AND CORRECTIONS	
INDONESIAN OBSERVATORIES	BASELINES	
DATA DISTRIBUTION 1	OPERATIONS	
DATA DISTRIBUTION	SIGNIFICANT EVENTS IN 2004	
INTERMAGNET	DISTRIBUTION OF LRM DATA	
ØRSTED SATELLITE SUPPORT	Data losses in 2004	
STORMS AND RAPID VARIATIONS	NOTES AND ERRATA (CUMULATIVE SINCE AGR'93)	
INDICES OF MAGNETIC DISTURBANCE	LEARMONTH ANNUAL MEAN VALUES	
DISTRIBUTION OF MEAN MAGNETIC VALUES 2	MONTHLY AND ANNUAL MEAN VALUES	31
AUSTRALIAN GEOMAGNETISM REPORT SERIES	HOURLY MEAN VALUES	31
WORLD WIDE WEB		
	ALICE SPRINGS OBSERVATORY	38
INSTRUMENTATION	Variometers	20
INTERVALS OF RECORDING AND MEAN VALUES 3	ABSOLUTE INSTRUMENTS AND CORRECTIONS	
MAGNETIC VARIOMETERS	BASELINES	
DATA REDUCTION	OPERATIONS	
ABSOLUTE MAGNETOMETERS	DATA LOSSES IN 2004	
REFERENCE MAGNETOMETERS	SIGNIFICANT EVENTS IN 2004	
DATA ACQUISITION	ALICE SPRINGS ANNUAL MEAN VALUES	
ANCILLARY EQUIPMENT	MONTHLY AND ANNUAL MEAN VALUES	
	HOURLY MEAN VALUES	
MAGNETIC OBSERVATORIES 6	DISTRIBUTION OF ASP DATA	
AUSTRALIAN MAGNETIC OBSERVATORIES: 2004 6		
AUSTRALIAN WAGNETIC OBSERVATORIES. 2004 0	GNANGARA OBSERVATORY	47
KAKADU OBSERVATORY7	VARIOMETERS	47
Variometers	ABSOLUTE INSTRUMENTS AND CORRECTIONS	
ABSOLUTE INSTRUMENTS AND CORRECTIONS	BASELINES	48
BASELINES 8	OPERATIONS	
OPERATIONS 8	SIGNIFICANT EVENTS IN 2004	49
KAKADU ANNUAL MEAN VALUES	Data losses in 2004	49
MONTHLY AND ANNUAL MEAN VALUES	K INDICES	
HOURLY MEAN VALUES	NOTES AND ERRATA (CUMULATIVE SINCE AGR'93)	
SIGNIFICANT EVENTS IN 2004	DISTRIBUTION OF GNA DATA	
Data losses in 2004	PRINCIPAL MAGNETIC STORMS	
DISTRIBUTION OF KDU DATA	RAPID VARIATION PHENOMENA	
	GNANGARA ANNUAL MEAN VALUES	
	MONTHLY AND ANNUAL MEAN VALUES	
	HOURLY MEAN VALUES	53
	End of Part 1	
	ind of Lout	

CONTENTS continued overleaf ...

rart 2	
CANBERRA OBSERVATORY	61
VARIOMETERS	61
ABSOLUTE INSTRUMENTS AND CORRECTIONS	61
BASELINES	62
OPERATIONS	
OPERATIONS (CONT.)	
SIGNIFICANT EVENTS IN 2004	
Data losses in 2004	
DISTRIBUTION OF CNB DATA	
PRINCIPAL MAGNETIC STORMS: CANBERRA, 2004	
RAPID VARIATION PHENOMENA	63
K INDICES	
CANBERRA ANNUAL MEAN VALUES	
MONTHLY AND ANNUAL MEAN VALUES	
HOURLY MEAN VALUES	66
MACQUARIE ISLAND	73
VARIOMETERS	73
ABSOLUTE INSTRUMENTS AND CORRECTIONS	74
BASELINES	74
OPERATIONS	74
DISTRIBUTION OF MCQ DATA	75
SIGNIFICANT EVENTS IN 2004	75
Data losses in 2004	
MACQUARIE ISLAND ANNUAL MEAN VALUES	76
MONTHLY AND ANNUAL MEAN VALUES	77
HOURLY MEAN VALUES	77
CASEY OBSERVATORY	84
VARIOMETERS	84
ABSOLUTE INSTRUMENTS AND CORRECTIONS	84
CASEY ANNUAL MEAN VALUES	85
OPERATIONS	85
MONTHLY AND ANNUAL MEAN VALUES	86
HOURLY MEAN VALUES	
SIGNIFICANT EVENTS IN 2004	
Data losses in 2004	93
DISTRIBUTION OF CSY DATA	93
NOTES AND ERRATA (INCLUDING DAVIS STATION)	
(CLIMITI ATIVE SINCE AGR'93)	93

MAWSON OBSERVATORY	. 94
Variometers	94
ABSOLUTE INSTRUMENTS AND CORRECTIONS	
Baselines	95
OPERATIONS	
Data losses in 2004	
MAWSON ANNUAL MEAN VALUES	95
DISTRIBUTION OF MAW DATA	97
SIGNIFICANT EVENTS IN 2004	97
K INDICES	97
NOTES AND ERRATA (CUMULATIVE SINCE AGR'93).	97
MONTHLY AND ANNUAL MEAN VALUES	99
HOURLY MEAN VALUES	99
INTERNATIONAL QUIET AND DISTURBED DAYS	106
REPEAT STATION NETWORK	107
STATION OCCUPATIONS	107
DISTRIBUTION OF REPEAT STATION DATA	108
	108 108
DISTRIBUTION OF REPEAT STATION DATA	108 108 108
DISTRIBUTION OF REPEAT STATION DATAAUSTRALIAN GEOMAGNETIC REFERENCE FIELD	108 108 108 116

The Australian Geomagnetism Report has been published in electronic format since Volume 47 for calendar year 1999.

These volumes are available on Geoscience Australia's web site: http://www.ga.gov.au/

The final volume that was produced in printed format was the *Australian Geomagnetism Report 1998*, Volume 46.

Part 2

CANBERRA OBSERVATORY

The Canberra Magnetic Observatory is located in the Australian Capital Territory, approximately 30km east of the city of Canberra. The Canberra observatory is the successor to the Rossbank (1840-1854), Melbourne (1858-1919), Toolangi (1919-1979) observatory sequence of sites in south eastern Australia (McGregor, 1979; Hopgood, 1993).

Recording at the Canberra Magnetic Observatory commenced in 1978 after which it replaced Toolangi as the principal magnetic observatory in the region. A detailed history of the observatory is in AGR 1994.

Situated on an approximately 8 hectare site, the observatory comprises a complex of buildings and structures: a RECORDER HOUSE 60m north of the entry gate; a SECONDARY VARIOMETER HOUSE (formerly known as the (AMO or PPM) SENSOR HOUSE) 75m to its west; an ABSOLUTE HOUSE 60m NE of the RECORDER HOUSE; a COMPARISON HOUSE 10m west of the ABSOLUTE HOUSE; a VARIOMETER HOUSE 80m NW of the RECORDER HOUSE; a TEST HOUSE 220m north of the RECORDER HOUSE; and the NATIONAL MAGNETOMETER CALIBRATION FACILITY 100m SE of the RECORDER HOUSE.

Other structures on the site include a sheltered external observation site, four azimuth pillars and a seismic vault. The latter houses seismometers operated by GA's Geophysical Networks and Nuclear Monitoring groups.

Key data for Canberra Observatory:

3-character IAGA code: **CNB** 1978 Commenced operation:

Geographic latitude: 35° 18' 52.6" S Geographic longitude: 149° 21' 45.4" E Geomagnetic[†]: Lat. -42.50°; Long. 226.79°

Lower limit for K index of 9: 450 nT Principal pier identification: Pier AW

Elevation of top of Pier AW: 859 metres AMSL

Azimuth of principal reference (NW pillar from Pier AW):

328° 37' 03" Distance to NW pillar: 137.3 metres Observers in Charge: L. Wang (GA)

Based on the IGRF 2000.0 model updated to 2004.5

Variometers

During 2004 (since November 1995) a Narod ring-core fluxgate (RCF) variometer operated as the principal variometer at the observatory. It was located on the pier in the eastern room of the VARIOMETER HOUSE. It monitored variations in three orthogonal components of the magnetic field, and was aligned to measure the (magnetic) north-west; north-east and vertical field components, denoted A, B and Z respectively.

A GEM Systems GSM-90 Overhauser effect magnetometer (electronics no. 803810, sensor no. 81225) monitored variations in Total Intensity. Since 17 Nov 2003 this instrument has operated in the western room of the VARIOMETER HOUSE with its sensor mounted on a standard PPM tripod.

Both a LEMI and DMI (no. E0254/S0227) 3-component fluxgate variometers served as secondary instruments during 2004 should the principal variometer become unserviceable.

Damage caused to the observatory by vandals in 2004 necessitated the relocation of variometers several times during the year. The LEMI operated in the SECONDARY VARIOMETER HOUSE from the beginning of 2004 until 19 Feb. and from 17 Sep. to the end of the year. The DMI E0254 S227 operated in the National Magnetometer Calibration Facility between 07 Apr. and 22 Sep. 2004.

The two intrusions by vandals caused damage to observatory buildings. Subsequent substantial security upgrades and building repairs that were carried out in June and July 2004 resulted in the contamination of Narod variometer data. No apparent baseline jumps occurred after these events or repair

The contaminated data were recovered from the backup variometers in the following UT time periods in 2004:

With DMI E0254 S0227:

June 11: 00:00 – 03:00; 22:00 - 23:30;14: 17: 22:00 - 23:59;00:18 - 01:00;18: 21: 00:00 - 02:5902:00 - 02:5929: 01:00 to 30 / 14:59 July 04: 00:00 - 00:5923:00 to 09 / 05:59 06: 12: 04:30 - 05:2914: 00:00 - 05:5900:00 - 00:5920: Aug 09: 01:20 - 01:4025: 23:00 - 23:59 With the LEMI: Oct 21: 01:00 - 01:59

Absolute Instruments and Corrections

Throughout 2004 absolute observations were regularly performed at Canberra with a Declination & Inclination Magnetometer (DIM) and a total field magnetometer.

The principal DIM used was an Elsec 810 (no. 200) electronics and sensor, with a Zeiss 020B (no. 353756) non-magnetic theodolite. This instrument was routinely used on ABSOLUTE pier Aw. In consideration of numerous intercomparisons between DIMs (and other magnetometers), zero corrections have been applied to absolute observations performed with the DIM Elsec 810/200; Zeiss 020B/353756.

The principal total field instrument used in 2004 was GSM90 Overhauser magnetometer with electronics no. 905926 and sensor no. 21867. (This sensor replaced no. 81241 in September 2002.) During 2004 this GSM90 magnetometer was used during regular absolute observations on pier Aw in the ABSOLUTE HOUSE. Observations with this, the GSM90 reference, are used without correction.

The principal absolute magnetometers at the Canberra Magnetic Observatory also serve as the reference instruments for the Australian observatory network. Their standardizations are traceable to international standards that are regularly maintained. (See the Reference Magnetometers section near the beginning of this report.)

Absolute Instruments and Corrections – CNB (cont.)

During 2004 several pier difference comparisons were performed between pier AW and external GPS Station GS. The comparison results showed no evidence of magnetic contamination around the piers.

The total field intensity difference measured on 06 and 20 July 2004 using GSM90_905926 with sensor 21867 on both pier AW and Station GS, and calculated using the RCF as a base-station was:

$$F(AW) = F(GS) - 3.6 \text{ nT}$$

The Declination and Inclination differences between these sites, measured using DIM E810_200/353756 on pier AW and DIM B0610h/160459 on a tripod 1.6 meter above station GS pad surface, and calculated using the RCF as a base-station,

 $D(AW) = D(GS) - 1.97' \pm 0.01' (06 \text{ Jul. } 2004)$ $D(AW) = D(GS) - 1.92' \pm 0.03' (20 \text{ Jul. } 2004)$

 $I(AW) = I(GS) + 0.25' \pm 0.01' (06 Jul. 2004)$

 $I(AW) = I(GS) + 0.24' \pm 0.02' (20 Jul. 2004)$

Instrument corrections were not taken into account.

Baselines

The variometers remained reasonably stable throughout 2004. Over the year baselines drifted by approximately:

8 nT in X; 12 nT in Y; 3 nT in Z.

The drift patterns of three channels were very similar to those in 2002 and 2003, i.e. the Narod variometer baseline drifts appear to be seasonally dependent.

With the drift corrections applied to the baselines, the mean value and standard deviation in the difference of absolute observations from a final variometer model were:

$$0.0 \pm 0.7$$
 in X; 0.1 ± 0.7 in Y; 0.0 ± 0.5 in Z.

There was less than 2.0 nT variation throughout the year in the F check calculated as the difference between F measured with the fluxgate (the final variometer model with drifts applied) and the variometer PPM.

Operations

Absolute observations were performed weekly (routinely on Tuesdays) by staff of the Geomagnetism Section on a roster. The rostered duties also included the computer-assisted hand-scaling and distribution of the previous week's K indices, and overseeing the transmission of 1-minute data from CNB (and other observatories) to INTERMAGNET.

The Narod RCF variometer was situated on pier (VE) in the east room of the VARIOMETER HOUSE that, for baseline stability, was maintained at a temperature of $26.5\pm0.5^{\circ}\text{C}$ throughout 2004. The temperature variation of the principal variometer sensors was $25.0\pm0.5^{\circ}\text{C}$. Data from the RCF were transmitted via optical fibre to the RECORDER HOUSE where they were recorded on an acquisition PC.

The GSM90 Total Intensity variometer, serving as an F-check on the vector variometer model, was located in the west room of the VARIOMETER HOUSE. It was controlled from the RECORDER HOUSE, to where its data were transmitted via optical fibre and recorded on the acquisition computer.

See the CNB *Variometers* section of this report for a description of the deployment of a LEMI and a DMI fluxgate variometer that served as secondary vector instruments.

Since the beginning of 2001, digital data were retrieved automatically every 10 minutes from the CNB observatory to GA via a real-time data link using modems and the telephone line that was established on 20 July 2000. From 23 April 2001 data telemetry was via a radio modem link.

Operations (cont.)

Once the raw data were received at GA, processing was automatically scheduled, after which processed 1-minute resolution data were provided by e-mail to ISGI, France every 10 minutes (to enable the production of a real-time aa-index) and daily to the Edinburgh INTERMAGNET GIN.

System power was backed up with a UPS with an approximately 4-hour capacity.

Significant Events in 2004

- 05 Feb Termite monitoring stations deployed by Sentricon. (Report received 03 Jun., 2004)
- 19 Feb Intrusion by vandals caused damage to the SECONDARY VARIOMETER HOUSE. The LEMI variometer was removed from there for security reasons
- 7 Apr DMI E0254/S0227 variometer was installed in the NATIONAL MAGNETOMETER CALIBRATION FACILITY to serve as a backup variometer.
- 08 Jun Commencement of security updates and repairs to the damaged SECONDARY VARIOMETER HOUSE.
- 21 Jun CPC pest control inspected the SECONDARY VARIOMETER HOUSE for termites. No further action recommended.
- 30 Jun Security updates and repairs to the SECONDARY VARIOMETER HOUSE completed. Break-in by vandals occurred again at 20:30 local time.
- 07 Jul Repairs to buildings damaged again by vandals commenced.
- 16 Jul Repairs to damaged buildings completed.
- 20 Jul GPS survey, round of angles, station differences to pier AW were carried out about station GS.
- 25 Aug Two non-magnetic internal door latches were installed in the PRIMARY VARIOMETER HOUSE.
- 17 Sep LEMI variometer re-installed in the SECONDARY VARIOMETER HOUSE to replace DMI E0254/S0277.
- 13 Oct Windows of the COMPARISON HOUSE were discovered to have been broken by vandalism.
- 19 Oct Security signage installed on doors of all buildings, front gate, around fence. Broken window of the COMPARISON HOUSE was replaced.
- 16 Nov Electronics of (Australian Reference) DIM E810_200 failed. No absolute observations performed this week.
- 23 Nov DIM electronics E810_215 replaced E810_200 in the routine absolute observations.
- 14 Dec Installation of fibre IP hub in CONTROL HUT rack and router in green radio box. Bottom lock repaired in door and intruder alarm installed in TOP HOUSE.

Data losses in 2004

- 05 Mar 1040 to 06/0153 (15h 14m) All channels: Power failure
- 07 Apr 0140–0153 (14m) Narod channels; 0147–0153 (7m) PPM channel: Instrument installation
- 20 Apr 0140–0153 (14m) Narod channels;
- 30 Jun 0135–0141 (6m) both Narod and backup variometer data contaminated.
- 21 Oct. 0133–0142 (10m) PPM channel.

Variometer PPM data were contaminated during the following periods (so excluded from INTERMAGNET data files):

Data losses in 2004 – CNB (cont.)

17 Jun 2210 to 18/0130

21 Jun 0000-0100

28 Jun 0200-0300

07 Jul 0200-0300

08 Jul 0000-0530

08 Jul 2200 to 09/0100

09 Jul 0400-0430

12 Jul 0440-0520

09 Aug 0100-0200

25 Aug 2300-2359

Distribution of CNB data

K indices - weekly by e-mail

- IPS Radio & Space Services, Sydney
- British Geological Survey, Edinburgh
- International Service of Geomagnetic Indices, Paris
- Royal Observatory of Belgium, Brussels
- CLS, CNES (French Space Agency), Toulouse

Distribution of CNB data (cont.)

K indices - semi-monthly by e-mail

Adolph-Schmidt-Observatory Niemegk, Germany

K indices with Principal Magnetic Storms and Rapid Variations - monthly by email.

- World Data Center-A, Boulder, USA
- WDC-C2, Kyoto, Japan
- Ebro Observatory, Roquetas, Spain

Preliminary Monthly Means for Project Ørsted

Sent monthly by email to IPGP.

Preliminary 1-minute values

Sent every 10 minutes to ISGI, France throughout 2004

1-minute and Hourly Mean Values to WDCs

- 2003: WDC-A, Boulder, USA (19 January 2004)
- 2004: WDC-A, Boulder, USA (01 August 2005; and 10 Jan. 2006)

1-minute Values for Project INTERMAGNET

- Preliminary data daily to the Edinburgh GIN by e-mail
- 2003 data sent to Paris GIN: 19 March 2004
- 2004 data sent to Paris GIN: 04 August 2005

Principal Magnetic Storms: Canberra, 2004

Comr	nencement	t	SC	amplit	udes	Maximum 3 hr. K index		Ranges	U.T. End	
Mth. Day	Hr.Min.	Type	D (')	H(nT)	Z(nT)	Day (3 hr. periods)	K	D(') H(nT) Z(nT)	Day Hr.	
Jan. 22	01 36	ssc	-5.8	11	17	22(5)	7	26.2 219 78	24 03	
Mar. 11	03 ••	•••				11(6,7)	5	14.6 116 40	12 18	
Apr. 05	12 ••	•••	••			05(6,7)	5	15.9 135 63	06 18	
Jul. 22	10 36	ssc	0.5	19	4	25(3)	7	39.8 203 144	26 09	
26	22 48	ssc*	-6.1*	-58*	8*	27(3,4,5)	7	44.4 231 151	28 06	
Aug. 29	10 05	ssc	0.6	14	4	30(6,7,8)	5	24.5 139 51	31 23	
Nov. 07	10 52	ssc	2.0	53	13	07(7,8), 08(1,2,3)	7	44.5 387 340	08 18	
09	03 ••	•••				10(4)	8	55.2 301 220	10 21	
Dec. 05	07 46	ssc*	2.2	114*	15*	05(3)	6	12.8 142 22	06 03	
30	04 ••	•••	••	••	••	30(3)	6	12.4 153 22	30 21	

No Principal Magnetic Storms reported for Canberra in: Feb., May, Jun., Sep. or Oct., 2004

Rapid Variation Phenomena

Sudden Storm Commencements (ssc) - CNB 2004

Month	U.T.	Type &	Chief movement (nT)					
& date		Quality	H D Z					
Jan. 22	0136	ssc B	+11 -40 +17					
Jul. 22 26		ssc A ssc* A	+19 +4 +4 -58 * -42 * +8 *					
Aug. 29	1005	ssc B	+14 +4 +4					
Sep. 13 22	2001 0634	ssc A ssc B	+32 +29 +4 +30 +7 +2					
Nov. 07 07	1052 1827	ssc A	+53 +14 +13 +34 +64 +8					
Dec. 05	0746	ssc* A	+114 * +15 +15					

No ssc reported: Feb., Mar. – Jun. and Oct., 2004.

Solar Flare Effects (sfe) - CNB 2004

Month		or move	ement	Ampl	Confir-		
te	Start	Max.	End	H	D	Z	mation
26	0154	0202	0232	-12	-2	+2	solar
26	2213	2240	2255	+1	-7	+1	solar
15	0132	0140	0154	+4	-1	+4	solar
16	0159	0211	0234	+4	-1	+2	solar
22	0027	0034	0045	+2	-1	-1	solar
12	0136	0140	0143	-2	-1	+1	solar
	26 26 15 16 22	26 0154 26 2213 15 0132 16 0159 22 0027	26 0154 0202 26 2213 2240 15 0132 0140 16 0159 0211 22 0027 0034	26 0154 0202 0232 26 2213 2240 2255 15 0132 0140 0154 16 0159 0211 0234 22 0027 0034 0045	26 0154 0202 0232 -12 26 2213 2240 2255 +1 15 0132 0140 0154 +4 16 0159 0211 0234 +4 22 0027 0034 0045 +2	26 0154 0202 0232 -12 -2 26 2213 2240 2255 +1 -7 15 0132 0140 0154 +4 -1 16 0159 0211 0234 +4 -1 22 0027 0034 0045 +2 -1	26 0154 0202 0232 -12 -2 +2 26 2213 2240 2255 +1 -7 +1

No sfe reported: Jan., Mar. – Jun., Aug., Sep., Oct. – Dec. in 2004.

K indices

K indices from the Canberra Magnetic Observatory contribute to the global Kp and aa indices, the southern hemisphere Ks index, and all their derivatives.

The table on the next page shows K indices for Canberra for

From 01 December 2002 K indices for Canberra were derived using a computer assisted method developed at GA. The method, based on the IAGA accepted LRNS algorithm, is described the *Data Distribution* section near the beginning of this report. (Before this K indices were derived by the hand scaling of H and D traces on magnetograms produced from the digital data, using the method described by Mayaud (1967).)

Canberra Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month. Plots of these data with secular variation in H, D, Z & F are on pages 71 & 72.

Year	Days		D		I	н	Х	Υ	Z	F	Elts*
roui	Dayo	(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	Lito
1979.5	Α	12	05.6	-66	05.9	23833	23305	4993	-53778	58822	DFI
1980.5	A	12	08.6	-66	06.9	23808	23275	5009	-53767	58801	DFI
1981.5	A	12	11.2	-66	09.1	23770	23234	5018	-53771	58791	DFI
1982.5	A	12	14.0	-66	10.8	23736	23197	5030	-53769	58775	DFI
1983.5	Α	12	16.6	-66	11.3	23723	23180	5044	-53756	58758	DFI
1984.5	Α	12	18.4	-66	11.7	23709	23164	5054	-53741	58739	DFI
1985.5	Α	12	20.7	-66	11.6	23703	23155	5067	-53726	58723	DFI
1986.5	Α	12	23.2	-66	12.1	23689	23137	5081	-53716	58707	DFI
1987.5	Α	12	25.5	-66	12.0	23684	23129	5096	-53699	58690	DFI
1988.5	Α	12	27.6	-66	12.8	23665	23107	5106	-53690	58674	DFI
1989.5	Α	12	29.0	-66	13.8	23644	23085	5111	-53683	58659	DFI
1990.5	Α	12	30.7	-66	13.6	23641	23079	5121	-53667	58643	DFI
1991.5	Α	12	31.8	-66	13.9	23628	23066	5126	-53652	58624	DFI
1992.5	Α	12	32.4	-66	12.8	23637	23073	5132	-53625	58603	DFI
1993.5	Α	12	33.0	-66	11.6	23646	23081	5138	-53597	58581	DFI
1994.5	Α	12	33.5	-66	10.8	23649	23083	5142	-53571	58559	DFI
1995.5	Α	12	33.8	-66	09.2	23665	23098	5148	-53540	58537	DFI
1996.5	Α	12	34.2	-66	07.4	23684	23108	5154	-53507	58514	ABC
1997.5	Α	12	34.2	-66	06.1	23695	23127	5157	-53476	58491	ABC
1998.5	Α	12	34.2	-66	05.2	23698	23130	5157	-53444	58463	ABC
1999.5	Α	12	34.1	-66	03.7	23709	23140	5159	-53403	58429	ABC
2000.5	Α	12	34.2	-66	02.9	23706	23139	5160	-53367	58396	ABC
2001.5	Α	12	34.7	-66	01.5	23716	23146	5164	-53327	58362	ABC
2002.5	A	12	35.1	-66	00.5	23718	23148	5168	-53291	58331	ABC
2003.5	A	12	35.5	-66	00.3	23710	23139	5169	-53264	58303	ABC
2004.5	Α	12	35.5	-65	58.8	23719	23149	5171	-53225	58271	ABC
1979.5	Q	12	05.5	-66	05.3	23844	23315	4995	-53775	58824	DFI
1980.5	Q	12	08.6	-66	06.8	23813	23280	5010	-53769	58806	DFI
1981.5	Q	12	11.4	-66	08.3	23783	23246	5022	-53767	58792	DFI
1982.5	Q	12	14.1	-66	10.1	23749	23210	5033	-53766	58778	DFI
1983.5	Q	12	16.5	-66	10.7	23734	23191	5046	-53753	58760	DFI
1984.5	Q	12	18.5	-66	11.1	23719	23174	5056	-53739	58741	DFI
1985.5	Q	12	20.7	-66	11.1	23713	23164	5070	-53724	58724	DFI
1986.5	Q	12	23.2	-66	11.6	23697	23146	5083	-53714	58709	DFI
1987.5	Q	12	25.5	-66	11.6	23690	23136	5097	-53698 -53697	58691	DFI DFI
1988.5	Q Q	12 12	27.7 29.1	-66 -66	12.2 13.0	23675	23118 23098	5109 5114	-53687	58676	DFI
1989.5 1990.5	Q	12	30.8	-66	12.8	23657 23653	23096	5114 5125	-53680	58662 58645	DFI
1990.5	Q	12	31.8	-66	12.0	23645	23082	5125	-53663 -53647	58627	DFI
1992.5	Q	12	32.5	-66	12.1	23649	23085	5135	-53622	58605	DFI
1993.5	Q	12	33.0	-66	11.1	23655	23090	5140	-53594	58583	DFI
1994.5	Q	12	33.6	-66	10.2	23661	23095	5145	-53568	58561	DFI
1995.5	Q	12	33.9	-66	08.7	23675	23108	5150	-53537	58538	DFI
1996.5	Q	12	34.2	-66	07.2	23689	23108	5155	-53506	58515	ABC
1997.5	Q	12	34.2	-66	05.6	23703	23135	5159	-53474	58492	ABC
1998.5	Q	12	34.3	-66	04.8	23706	23137	5159	-53443	58464	ABC
1999.5	Q	12	34.1	-66	03.2	23716	23148	5161	-53400	58430	ABC
2000.5	Q	12	34.3	-66	02.2	23718	23149	5162	-53365	58398	ABC
2001.5	Q	12	34.7	-66	00.9	23726	23156	5167	-53324	58364	ABC
2002.5	Q	12	35.1	-65	59.8	23730	23159	5171	-53289	58334	ABC
2003.5	Q	12	35.5	-65	59.5	23723	23152	5172	-53261	58306	ABC
2004.5	Q	12	35.5	-65	58.3	23728	23157	5173	-53223	58273	ABC
1979.5	D	12	5.6	-66	6.9	23816	23287	4990	-53782	58819	DFI
1980.5	D	12	8.4	-66	7.8	23792	23260	5004	-53770	58798	DFI
1981.5	D	12	11.1	-66	10.3	23750	23215	5013	-53776	58787	DFI
1982.5	D	12	13.7	-66	12.4	23710	23172	5022	-53773	58769	DFI

continued on page 73 ...

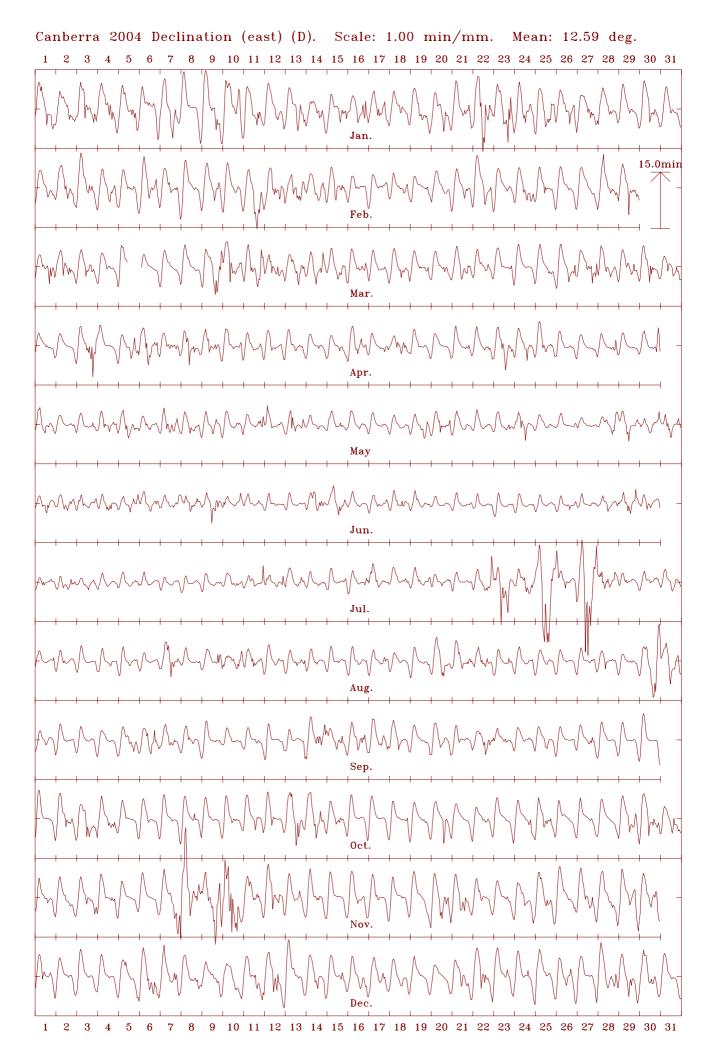
Date	January Febru			March			April		May	June Dat
01	3343 5343 28 2321 33	212 16		3432 2		0111	2001 06		2211 16 1111 08	D 2243 4311 20 01
02 03 04 05	3322 3342 22 2233 43 3344 3233 25 3444 33 3243 4432 25 2233 33 3333 4333 25 2333 13	332 26 312 19	1214 1232	4312 1 1111 1	L8 D	0123 4202	0000 03 5454 24 2112 14 4552 19	0222 2232	1111 08 1231 13 13122 17 12432 20	3 2221 1103 12 03 7 2213 3311 16 04
06 07 08 09 10	3342 2234 23 1334 3 D 2354 4433 28 1123 3 Q 1112 2122 12 Q 0111 1: 2343 3432 24 1022 3: 2443 4341 25 Q 1111 3:	111 13 112 08 312 14	Q 0101 Q 1232 D 2323	0000 - 0111 (0100 (4444 2 3223 2)5)9 26 D	2232 2234 3443	4232 26 2223 18 3321 20 2321 22 1123 15	D 2343 2223 0102	2 2122 14 3 3321 21 3 3211 16 3 3200 08 1111 07	2113 3221 15 07 5 1113 1231 13 08 8 D 2134 2421 19 09
11 12 13 14 15	2233 3421 20 D 2123 4 Q 1211 3232 15 D 3444 3 2222 5433 23 D 3333 4 Q 3222 3232 19 2313 4 1122 4434 21 D 3334 2	433 28 332 24 422 21	D 3433 2233 2234	4553 2 3411 2 4321 2 4331 2 3332 1	22 20 22	2232 2212 2100	2211 13 1221 15 2111 12 2101 07 2222 13	1331 0243 1110	1133 13 2121 14 2231 17 2100 06 1201 08	0210 1000 04 12 0011 0100 03 13 1034 3221 16 14
16 17 18 19 20	D 2323 4443 25 2112 22 2323 3333 22 Q 0001 02 2331 3233 20 1111 11 2233 4423 23 3211 02 2332 4422 22 Q 1000 13	202 05 322 12 122 12 211 06	1201 1322 2202 1211	2321 1 1021 0 3321 1 1122 1 2312 1	08 L7 L2 L3 Q	1222 1232 1112 1011	2322 20 3221 15 4321 18 1100 07 0001 04	Q 0001 Q 1002 1001 D 1134	1111 06 1011 04 1000 04 2331 11 2222 17	1 1112 1122 11 17 1 1112 3220 12 18 1 1122 1100 08 19 7 Q 0010 0010 02 20
21 22 23 24 25	2342 4333 24 1102 3: D 4456 7353 37 2112 4: D 3345 4554 33 2112 2: 2232 3322 19 2223 3: D 3434 4343 28 1103 1:	312 16 212 13 333 21 011 08	2232 1121 Q 1200 Q 0000	4322 2 2322 1 0121 0 0000 0 1222 0	L8 Q DD D D	0110 2344 1124 2344	1221 10 1011 05 4322 24 3311 16 3211 20	0232 2212 1133 1012	2210 11 2 1211 12 3 3221 15 4 4110 14 2 1100 06	2 Q 0101 0000 02 22 3 Q 0000 0000 00 23 4 0120 1000 04 24 5 Q 0000 1010 02 25
26 27 28 29 30	2323 4333 23 Q 2100 1 3133 3322 20 2323 2 4322 3322 21 1343 3 Q 2123 3113 16 D 1325 4 2344 3322 23	132 18 333 23	2223 3433 1222 1234	3333 1 3435 2 3322 2 3311 1 4311 1	24 23 L5 Q L9	1211 0010 0101	0220 06 0110 07 1222 08 0001 03 1144 16	Q 1011 0011 D 1124 1124	. 1000 03 . 0000 03 . 2332 12 . 3222 17 . 2232 17	3 Q 0000 1110 03 27 2 D 1113 2122 13 28 7 D 3233 3231 20 29 7 2233 3110 15 30
31 Mean	Q 1124 2111 13 K-sum 22.7	16.3		16.			13.5		3121 17 11.8	
Date				ptember		00	tober		vember	December Dat
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1133 2211 14 3110 01 1111 2321 12 0122 11 1122 3120 12 Q 0100 01 113 0000 06 Q 0000 11 1101 1111 07 0012 21 Q 1113 1000 07 2110 00 Q 0010 1000 02 1244 44 Q 0000 0000 00 Q 0110 00 Q 1110 0010 04 2222 11 0112 1210 08 D 2111 3 2113 3124 17 1123 2 3230 2123 15 2111 21 3231 2232 18 1100 2 0121 2110 08 1222 11 0011 0112 06 0100 10 1011 1113 09 0101 11 1011 1113 09 0101 11 113 09 0101 11 113 09 0101 11 1111 09 122 11 011 1113 09 122 11 011 1113 09 0101 11 1121 0121 09 1232 11 0213 2212 13 1000 12 1121 0221 13 D 2224 31 Q 110 0100 04 D 2343 21 1013 3345 20 2234 21 D 3355 4521 28 0111 12 D 3333 4324 25 Q 1001 21 D 4576 6644 42 Q 0001 11 D 5323 1127 24 0000 11	001 07 000 01 100 02 111 08 011 06 211 19 000 02 232 16 332 16 221 14 101 09 112 09 111 11 06 321 19 222 20 331 18 201 10 111 06 321 19 222 20 331 18 210 07 100 05 200 04 101 03 111 06 111 07 111 07 111 08 11 08	1111 Q 1100 Q 0011 D 1134 1223 1121 0101 Q 0102 Q 0000 D 3344 2213 D 2234 D 3323 3213 1011 2143 D 1132 2311 1012 0003 0000 0003	2211 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06	2234 1124 2322 01020 0001 00021 2111 1213 2221 1122 2433 2334 2113 1211 2010 0000 0101 2331 2321 1211 2233 1100 0021 1100 0003 3334	0111 04 4311 20 4321 19 2222 17 0001 04 0000 03 2312 11 1001 07 2011 11 3212 15 1102 10 5422 25 5321 23 2111 12 1001 07 0000 00 1221 06 2311 09 4412 20 0011 10 2211 11 111 05 1342 15 3211 17 1000 03 2221 10 1011 05 3332 14 3312 22 3322 18	Q 0012 1113 2321 Q 1110 Q 1011 D 1214 D 7776 D 3455 D 6678 2333 D 3454 1123 2121 Q 1110 1233 1222 Q 1000 1220 3334 3234 2222 2102 21123 3333 1121 2122 2123 3333	3200 10 1112 08 2233 10 1010 05 4477 30 4233 39 6576 41 6576 41 6576 41 6221 12 1211 12 1200 00 03 4422 12 1000 03 1101 04 1222 12 1212 12 1221 12 1232 17 1232 17 1233 123 17 1234	3 Q 1110 1111 07 02 4 Q 1111 1111 08 03 8 Q 0000 1000 01 04 8 1263 2232 21 05 6 D 2333 4433 25 06 9 2222 2212 15 08 1112 2122 12 09 1122 5333 20 11 1233 3323 19 10 10 D 2334 3533 26 12 14 4332 1111 16 13 13 15 13 1233 3222 18 14 1230 1312 15 13 1321 3334 20 16 13 15 13 1321 3334 20 16 18 19 14 2323 3221 18 18 19 1112 2001 07 20 24 2444 <
Mean	K-sum 14.3	10.5		10.	. 7		11.5		18.0	16.6
			Occurre	nce dist	rihuti	ion of	K-indice			
	K-Index:	0		2 3	4	5	6	.s 7 8	9	_
	January February March April May June July August September October November	0 18 25 38 45 66 45 70 73 61 26	21 63 66 58 77 78 78 77 89 73 66 89 57 72 57 57 66	9 100 5 65 4 58 3 26 2 34 3 31 0 37 4 21 0 33 2 33 8 51	48 19 23 21 8 7 9 13 11 11	8 2 4 4 0 0 7 3 1 2 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 7 1	0 0 0 0 0 0 0	0 0 6 0 0 0 0 0 0
	December ANNUAL TOTAL	12 479	72 7 838 77	8 552	18 207	3 39	2 15 :	0 0 L3 1	0 0	<u>0</u>

Monthly and Annual Mean Values

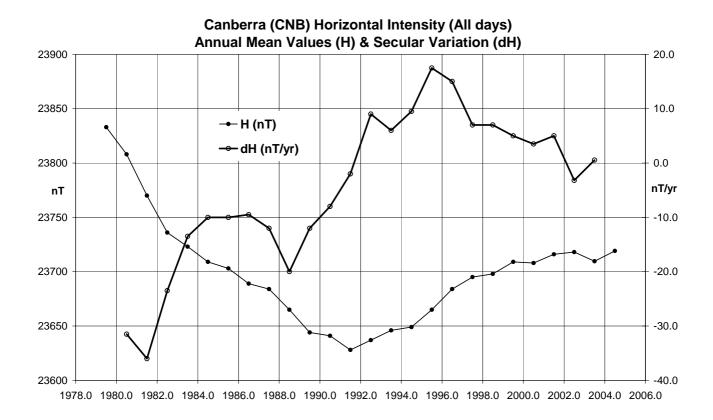
The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

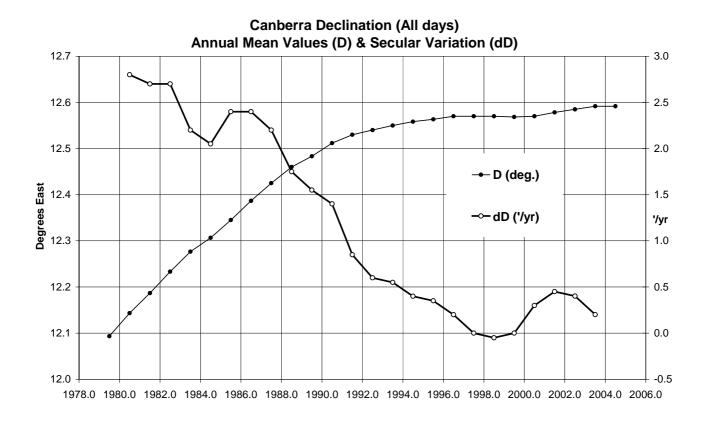
A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

February	D (East)) I
February	12° 35.2'	' -65° 59.4'
February	12° 35.2'	' -65° 59.2'
5xQ days 23155.0 5171.5 -53237.7 58285.1 23725.5 1 March All days 23137.2 5163.1 -53242.2 58281.4 23706.3 1 March All days 23146.7 5171.1 -53230.6 58278.0 23711.3 1 5xD days 23134.7 5175.2 -53230.1 58287.6 23701.8 1 April All days 23146.3 5172.8 -53230.4 58275.1 23717.3 1 5xQ days 23156.9 5175.4 -53227.8 58277.2 23728.2 1 5xD days 23152.5 5172.9 -53226.5 58274.0 23723.4 1 5xD days 23159.1 5174.9 -53226.5 58275.1 23717.3 1 June All days 23156.1 5173.3 -53220.0 58271.2 23723.4 1 June All days 23150.2 5172.4 -53221.3 58271.0 23723.4 1 July <t< td=""><td>12° 34.9'</td><td>' -66° 00.4'</td></t<>	12° 34.9'	' -66° 00.4'
March All days 23137.2 5163.1 -53242.2 58281.4 23706.3 1. March All days 23146.7 5171.1 -53233.6 58278.0 23717.3 1. 5xQ days 23160.7 5175.2 -53230.1 58280.7 23731.8 1. April All days 23146.7 5167.8 -53230.4 58275.1 23704.9 1. April All days 23146.3 5172.8 -53220.4 58275.1 23707.9 1. 5xQ days 23150.9 5175.4 -53227.8 58277.2 23728.2 1. May All days 23152.5 5172.9 -53226.5 58274.0 23723.4 1. 5xQ days 23159.1 5174.9 -53226.5 58274.0 23723.4 1. June All days 23150.1 5174.9 -53226.0 58275.4 23730.2 1. June All days 23160.1 5173.3 -53224.4 58271.7 23726.9 1. </td <td>12° 35.3'</td> <td>' -65° 59.2'</td>	12° 35.3'	' -65° 59.2'
March All days 23146.7 5171.1 -53233.6 58278.0 23717.3 1. 5xQ days 23160.7 5175.2 -53230.1 58280.7 23731.8 1. 5xD days 23134.7 5167.8 -53236.5 58275.6 23704.9 1. April All days 23146.3 5172.8 -53230.4 58275.1 23717.3 1. 5xQ days 23156.9 5175.4 -53227.8 58277.2 23728.2 1. 5xD days 23156.9 5175.4 -53227.8 58271.6 23707.9 1. May All days 23152.5 5172.9 -53226.5 58274.0 23723.4 1. 5xQ days 23159.1 5174.9 -53226.5 58274.0 23730.2 1. 5xQ days 23166.1 5173.3 -53222.4 58271.7 23726.9 1. 5xQ days 23160.2 5172.4 -53221.3 58272.6 23734.0 1. 5xQ days 23160.2 5172	12° 35.4′	' -65° 58.8'
5xQ days 23160.7 5175.2 -53230.1 58280.7 23731.8 1 April All days 23134.7 5167.8 -53236.5 58275.6 23704.9 1 April All days 23146.3 5172.8 -53230.4 58275.1 23717.3 1 5xQ days 23156.9 5175.4 -53227.8 58277.2 23728.2 1 May All days 23152.5 5172.9 -53226.5 58274.0 23707.9 1 5xQ days 23159.1 5174.9 -53226.5 58274.0 23730.2 1 5xQ days 23148.3 5171.0 -53226.4 58271.7 23726.9 1 5xQ days 23163.3 5173.3 -53222.4 58271.7 23726.9 1 5xQ days 23160.2 5172.4 -53220.3 58270.5 23721.0 1 July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1 5xQ days 23162.7	12° 34.8′	' -65° 59.9'
April All days 23134.7 5167.8 -53236.5 58275.6 23704.9 1. April All days 23146.3 5172.8 -53230.4 58275.1 23717.3 1. 5xQ days 23156.9 5175.4 -53227.8 58277.2 23728.2 1. May All days 23152.5 5172.9 -53226.5 58274.0 23723.4 1. 5xQ days 23159.1 5174.9 -53226.5 58274.0 23723.4 1. June All days 23166.1 5173.3 -53226.4 58272.1 23718.9 1. June All days 23166.1 5173.3 -53222.4 58271.7 23726.9 1. 5xQ days 23166.1 5173.3 -53222.4 58271.7 23726.9 1. July All days 23150.2 5172.4 -53222.3 58270.5 23711.0 1. July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1.	12° 35.6′	
April All days 23146.3 5172.8 -53230.4 58275.1 23717.3 1. 5xQ days 23156.9 5175.4 -53227.8 58277.2 23728.2 1. 5xD days 23137.4 5169.3 -53230.8 58271.6 23707.9 1. May All days 23152.5 5172.9 -53226.5 58274.0 23723.4 1. 5xQ days 23159.1 5174.9 -53225.0 58275.4 23730.2 1. 5xD days 23148.3 5171.0 -53226.4 58272.1 23718.9 1. June All days 23163.3 5173.3 -53222.4 58271.7 23726.9 1. 5xQ days 23163.3 5173.3 -53222.0 58265.0 23734.0 1. 5xQ days 23150.2 5172.4 -53223.7 58270.5 23721.0 1. July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1. 5xQ days 23162.7 517	12° 35.7'	' -65° 58.3'
5xQ days 23156.9 5175.4 -53227.8 58277.2 23728.2 1 May All days 23137.4 5169.3 -53230.8 58271.6 23707.9 1 May All days 23152.5 5172.9 -53226.5 58274.0 23723.4 1 5xQ days 23159.1 5174.9 -53225.0 58275.4 23730.2 1 June All days 23156.1 5173.3 -53222.4 58271.7 23726.9 1 5xQ days 23163.3 5173.3 -53220.3 58272.6 23734.0 1 5xD days 23150.2 5172.4 -53223.7 58270.5 23721.0 1 July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1 5xQ days 23162.7 5172.1 -53216.8 58269.1 23733.1 1 5xQ days 23162.7 5172.1 -53216.8 58269.2 23715.2 1 5xQ days 23144.3	12° 35.5'	' -65° 59.9'
May All days 23137.4 5169.3 -53230.8 58271.6 23707.9 1. May All days 23152.5 5172.9 -53226.5 58274.0 23723.4 1. 5xQ days 23159.1 5174.9 -53225.0 58275.4 23730.2 1. June All days 23156.1 5173.3 -53222.4 58271.7 23726.9 1. 5xQ days 23163.3 5173.3 -53220.3 58272.6 23734.0 1. 5xD days 23150.2 5172.4 -53223.7 58270.5 23721.0 1. July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1. 5xQ days 23162.7 5172.1 -53216.8 58269.1 23733.1 1. 5xD days 23146.4 5172.2 -53223.2 58251.0 23658.3 1. August All days 23146.4 5172.5 -53224.1 58269.3 23717.3 1. 5xD days	12° 35.9'	' -65° 59.1'
May All days 23152.5 5172.9 -53226.5 58274.0 23723.4 1 5xQ days 23159.1 5174.9 -53225.0 58275.4 23730.2 1 5xD days 23148.3 5171.0 -53226.4 58272.1 23718.9 1 June All days 23156.1 5173.3 -53222.4 58271.7 23726.9 1 5xQ days 23163.3 5173.3 -53220.3 58272.6 23734.0 1 5xD days 23150.2 5172.4 -53223.7 58270.5 23721.0 1 July All days 23162.7 5172.1 -53226.0 58265.0 23711.3 1 5xQ days 23162.7 5172.1 -532216.8 58269.1 23733.1 1 5xD days 23144.3 5172.2 -53223.8 58268.2 23715.2 1 5xQ days 23144.3 5172.2 -53223.8 58268.2 23715.2 1 5xQ days 23128.9 5169.0	12° 35.9'	' -65° 58.4'
5xQ days 23159.1 5174.9 -53225.0 58275.4 23730.2 1 5xD days 23148.3 5171.0 -53226.4 58272.1 23718.9 1 June All days 23156.1 5173.3 -53222.4 58271.7 23726.9 1 5xQ days 23163.3 5173.3 -53220.3 58272.6 23734.0 1 5xD days 23150.2 5172.4 -53223.7 58270.5 23721.0 1 July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1 5xQ days 23162.7 5172.1 -53216.8 58269.1 23733.1 1 5xQ days 23162.7 5172.1 -53223.8 58269.1 23733.1 1 5xQ days 23144.3 5172.2 -53223.8 58268.2 23715.2 1 5xQ days 23146.4 5172.5 -53224.1 58269.3 23717.3 1 5xQ days 23154.2 5172.8 -53217.9 58265.3 2	12° 35.6′	' -65° 59.6'
June All days 23148.3 5171.0 -53226.4 58272.1 23718.9 1. June All days 23156.1 5173.3 -53222.4 58271.7 23726.9 1. 5xQ days 23163.3 5173.3 -53220.3 58272.6 23734.0 1. 5xD days 23150.2 5172.4 -53223.7 58270.5 23721.0 1. July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1. 5xQ days 23162.7 5172.1 -53216.8 58269.1 23733.1 1. 5xD days 23090.8 5150.6 -53223.8 58265.0 23715.2 1. August All days 23144.3 5172.2 -53223.8 58268.2 23715.2 1. 5xQ days 23146.4 5172.5 -53224.1 58269.3 23717.3 1. 5xD days 23150.4 5172.8 -53217.9 58265.3 23721.3 1. 5xQ days 23154.2	12° 35.7'	' -65° 58.6'
June All days 23156.1 5173.3 -53222.4 58271.7 23726.9 1 5xQ days 23163.3 5173.3 -53220.3 58272.6 23734.0 1 5xD days 23150.2 5172.4 -53223.7 58270.5 23721.0 1 July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1 5xQ days 23162.7 5172.1 -53216.8 58269.1 23733.1 1 5xD days 23090.8 5150.6 -53230.2 58251.0 23658.3 1 August All days 23144.3 5172.2 -53223.8 58268.2 23715.2 1 5xQ days 23146.4 5172.5 -53224.1 58269.3 23717.3 1 5xD days 23150.4 5172.8 -53217.9 58265.3 23721.3 1 5xQ days 23154.2 5172.8 -53217.9 58266.7 23724.9 1 5xQ days 23164.9 5172.6	12° 35.8′	' -65° 58.2'
5xQ days 23163.3 5173.3 -53220.3 58272.6 23734.0 1. July All days 23150.2 5172.4 -53223.7 58270.5 23721.0 1. July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1. 5xQ days 23162.7 5172.1 -53216.8 58269.1 23733.1 1. 5xD days 23090.8 5150.6 -53230.2 58251.0 23658.3 1. August All days 23144.3 5172.2 -53223.8 58268.2 23715.2 1. 5xQ days 23146.4 5172.5 -53224.1 58269.3 23717.3 1. 5xD days 23150.4 5172.8 -53217.9 58265.3 23721.3 1. September All days 23154.2 5172.6 -53217.9 58266.7 23724.9 1. 5xQ days 23154.2 5172.9 -53220.0 58261.8 23729.1 1. 5xQ days 23	12° 35.5'	-65° 58.9'
July All days 23150.2 5172.4 -53223.7 58270.5 23721.0 1. July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1. 5xQ days 23162.7 5172.1 -53216.8 58269.1 23733.1 1. 5xD days 23090.8 5150.6 -53230.2 58251.0 23658.3 1. August All days 23144.3 5172.2 -53223.8 58268.2 23715.2 1. 5xQ days 23146.4 5172.5 -53224.1 58269.3 23717.3 1. 5xD days 23128.9 5169.0 -53225.6 58263.4 23699.5 1. September All days 23150.4 5172.8 -53217.9 58265.3 23721.3 1. 5xQ days 23154.2 5172.6 -53217.9 58266.7 23724.9 1. 5xD days 23143.5 5172.9 -53220.0 58261.8 23729.1 1. 5xQ days 23	12° 35.6′	' -65° 58.3'
July All days 23141.2 5168.0 -53222.0 58265.0 23711.3 1. 5xQ days 23162.7 5172.1 -53216.8 58269.1 23733.1 1. 5xD days 23090.8 5150.6 -53230.2 58251.0 23658.3 1. August All days 23144.3 5172.2 -53223.8 58268.2 23715.2 1. 5xQ days 23146.4 5172.5 -53224.1 58269.3 23717.3 1. 5xD days 23128.9 5169.0 -53225.6 58263.4 23699.5 1. 5xD days 23150.4 5172.8 -53217.9 58265.3 23721.3 1. 5xQ days 23154.2 5172.6 -53217.9 58266.3 23724.9 1. 5xD days 23143.5 5172.9 -53220.0 58264.4 23714.5 1. 5xQ days 23164.9 5174.8 -53208.7 58262.9 23735.9 1. 5xD days 23145.7 5169.4 -5	12° 35.4'	' -65° 57.9'
5xQ days 23162.7 5172.1 -53216.8 58269.1 23733.1 1. 5xD days 23090.8 5150.6 -53230.2 58251.0 23658.3 1. August All days 23144.3 5172.2 -53223.8 58268.2 23715.2 1. 5xQ days 23146.4 5172.5 -53224.1 58269.3 23717.3 1. 5xD days 23128.9 5169.0 -53225.6 58263.4 23699.5 1. September All days 23150.4 5172.8 -53217.9 58265.3 23721.3 1. 5xQ days 23154.2 5172.6 -53217.9 58266.7 23724.9 1. 5xD days 23143.5 5172.9 -53220.0 58264.4 23714.5 1. October All days 23158.4 5172.5 -53210.6 58261.8 23729.1 1. 5xQ days 23145.7 5169.4 -53212.7 58262.9 23735.9 1. November All days 23153.4 5171.6 -53210.5 58260.1 23724.0 </td <td>12° 35.7'</td> <td>-65° 58.7'</td>	12° 35.7'	-65° 58.7'
August All days 23144.3 5172.2 -53223.8 58268.2 23715.2 1:	12° 35.3'	
August All days 23144.3 5172.2 -53223.8 58268.2 23715.2 1.5xQ days 23146.4 5172.5 -53224.1 58269.3 23717.3 1.5xQ days 23128.9 5169.0 -53225.6 58263.4 23699.5 1.5xQ days 23150.4 5172.8 -53217.9 58265.3 23721.3 1.5xQ days 23154.2 5172.6 -53217.9 58266.7 23724.9 1.5xQ days 23143.5 5172.9 -53220.0 58264.4 23714.5 1.5xQ days 23143.5 5172.9 -53220.0 58264.4 23714.5 1.5xQ days 23164.9 5174.8 -53210.6 58261.8 23729.1 1.5xQ days 23164.9 5174.8 -53208.7 58262.9 23735.9 1.5xQ days 23145.7 5169.4 -53212.7 58258.4 23715.9 1.5xQ days 23153.4 5171.6 -53211.0 58260.6 23705.4 1.5xQ days 23153.4 5171.6 -53211.0 58260.1 23724.0 1.5xQ days 23157.8 5172.3 -53210.5 58260.1 23725.2 1.5xQ days 23157.8 5172.3 -53210.5 58260.1 23725.2 1.5xQ days	12° 35.2′	' -65° 57.9'
5xQ days 23146.4 5172.5 -53224.1 58269.3 23717.3 11 5xD days 23128.9 5169.0 -53225.6 58263.4 23699.5 11 September All days 23150.4 5172.8 -53217.9 58265.3 23721.3 11 5xQ days 23154.2 5172.6 -53217.9 58266.7 23724.9 11 5xD days 23143.5 5172.9 -53220.0 58264.4 23714.5 11 October All days 23158.4 5172.5 -53210.6 58261.8 23729.1 11 5xQ days 23164.9 5174.8 -53208.7 58262.9 23735.9 11 5xD days 23145.7 5169.4 -53212.7 58258.4 23715.9 11 November All days 23153.4 5171.6 -53219.8 58260.6 23705.4 11 5xD days 23083.4 5155.1 -53236.4 58260.1 23725.2 12 December All days 23155.1 5169.7 -53210.5 58260.1	12° 34.5'	-66° 02.2'
September All days 23128.9 5169.0 -53225.6 58263.4 23699.5 13 September All days 23150.4 5172.8 -53217.9 58265.3 23721.3 13 5xQ days 23154.2 5172.6 -53217.9 58266.7 23724.9 13 5xD days 23143.5 5172.9 -53220.0 58264.4 23714.5 13 October All days 23158.4 5172.5 -53210.6 58261.8 23729.1 13 5xQ days 23164.9 5174.8 -53208.7 58262.9 23735.9 13 5xD days 23145.7 5169.4 -53212.7 58258.4 23715.9 13 November All days 23153.4 5171.6 -53219.8 58260.6 23705.4 13 5xD days 23153.4 5171.6 -53211.0 58260.1 23724.0 13 5xD days 23155.1 5169.7 -53210.5 58260.1 23725.2 13 5xD days	12° 35.8′	
September All days 23150.4 5172.8 -53217.9 58265.3 23721.3 1350.4 1350.4 5172.8 -53217.9 58265.3 23721.3 1350.4 1350.4 1450.4 1550.4	12° 35.8′	
5xQ days 23154.2 5172.6 -53217.9 58266.7 23724.9 1 5xD days 23143.5 5172.9 -53220.0 58264.4 23714.5 1 October All days 23158.4 5172.5 -53210.6 58261.8 23729.1 1 5xQ days 23164.9 5174.8 -53208.7 58262.9 23735.9 1 5xD days 23145.7 5169.4 -53212.7 58258.4 23715.9 1 November All days 23135.5 5166.8 -53219.8 58260.6 23705.4 1 5xQ days 23153.4 5171.6 -53211.0 58260.1 23724.0 1 5xD days 23083.4 5155.1 -53236.4 58254.1 23652.1 1 December All days 23155.1 5169.7 -53210.5 58260.1 23725.2 1 5xD days 23153.3 5167.5 -53210.9 58269.6 23723.0 1 Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1<	12° 35.9'	' -65° 59.9'
October All days 23143.5 5172.9 -53220.0 58264.4 23714.5 13 October All days 23158.4 5172.5 -53210.6 58261.8 23729.1 13 5xQ days 23164.9 5174.8 -53208.7 58262.9 23735.9 13 5xD days 23145.7 5169.4 -53212.7 58258.4 23715.9 13 November All days 23135.5 5166.8 -53219.8 58260.6 23705.4 13 5xQ days 23153.4 5171.6 -53211.0 58260.1 23724.0 13 5xD days 23155.1 5169.7 -53236.4 58254.1 23652.1 13 December All days 23157.8 5172.3 -53210.5 58260.1 23725.2 13 5xD days 23153.3 5167.5 -53210.9 58259.6 23723.0 13 Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1 13	12° 35.7'	
October All days 23158.4 5172.5 -53210.6 58261.8 23729.1 125 5xQ days 23164.9 5174.8 -53208.7 58262.9 23735.9 125 5xD days 23145.7 5169.4 -53212.7 58258.4 23715.9 125 November All days 23135.5 5166.8 -53219.8 58260.6 23705.4 125 5xQ days 23153.4 5171.6 -53211.0 58260.1 23724.0 125 5xD days 23083.4 5155.1 -53236.4 58254.1 23652.1 125 December All days 23155.1 5169.7 -53210.5 58260.1 23725.2 125 5xQ days 23157.8 5172.3 -53210.5 58260.1 23728.4 115 5xD days 23153.3 5167.5 -53210.9 58259.6 23723.0 115 Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1 115	12° 35.6′	' -65° 58.3'
5xQ days 23164.9 5174.8 -53208.7 58262.9 23735.9 135.5 5xD days 23135.5 5166.8 -53219.8 58260.6 23705.4 135.5 5xQ days 23153.4 5171.6 -53211.0 58260.1 23724.0 135.2 5xD days 23083.4 5155.1 -53236.4 58254.1 23652.1 135.2 December All days 23155.1 5169.7 -53210.5 58260.1 23725.2 135.2 5xQ days 23157.8 5172.3 -53211.0 58261.9 23728.4 135.2 5xD days 23153.3 5167.5 -53210.9 58259.6 23723.0 135.2 Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1 135.2	12° 36.0'	' -65° 59.0'
November All days 23145.7 5169.4 -53212.7 58258.4 23715.9 13 November All days 23135.5 5166.8 -53219.8 58260.6 23705.4 13 5xQ days 23153.4 5171.6 -53211.0 58260.1 23724.0 13 5xD days 23083.4 5155.1 -53236.4 58254.1 23652.1 13 December All days 23155.1 5169.7 -53210.5 58260.1 23725.2 13 5xQ days 23157.8 5172.3 -53211.0 58261.9 23728.4 13 5xD days 23153.3 5167.5 -53210.9 58259.6 23723.0 13 Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1 13	12° 35.4′	-65° 57.9'
November All days 23135.5 5166.8 -53219.8 58260.6 23705.4 123724.0 5xQ days 23153.4 5171.6 -53211.0 58260.1 23724.0 123724.0 123724.0 123724.0 123724.0 123725.2 <td>12° 35.6′</td> <td>' -65° 57.5'</td>	12° 35.6′	' -65° 57.5'
5xQ days 23153.4 5171.6 -53211.0 58260.1 23724.0 13524.0 5xD days 23083.4 5155.1 -53236.4 58254.1 23652.1 13525.2 December All days 23155.1 5169.7 -53210.5 58260.1 23725.2 13525.2 5xQ days 23157.8 5172.3 -53211.0 58261.9 23728.4 13525.2 5xD days 23153.3 5167.5 -53210.9 58259.6 23723.0 13525.2 Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1 13525.2	12° 35.4'	-65° 58.7'
December All days 23083.4 5155.1 -53236.4 58254.1 23652.1 13 December All days 23155.1 5169.7 -53210.5 58260.1 23725.2 13 5xQ days 23157.8 5172.3 -53211.0 58261.9 23728.4 11 5xD days 23153.3 5167.5 -53210.9 58259.6 23723.0 13 Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1 13	12° 35.3'	-65° 59.4'
December All days 23155.1 5169.7 -53210.5 58260.1 23725.2 123725.2	12° 35.5′	' -65° 58.2'
5xQ days 23157.8 5172.3 -53211.0 58261.9 23728.4 11 5xD days 23153.3 5167.5 -53210.9 58259.6 23723.0 11 Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1 11	12° 35.3'	-66° 02.7'
5xD days 23153.3 5167.5 -53210.9 58259.6 23723.0 13 Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1 13	12° 35.1'	' -65° 58.1'
Annual All days 23148.6 5170.8 -53225.2 58271.0 23719.1 1	12° 35.4′	
· · · · · · · · · · · · · · · · · · ·	12° 34.9'	' -65° 58.3'
· · · · · · · · · · · · · · · · · · ·	12° 35.5'	' -65° 58.8'
- IVIEGI DXCU CAVS 25107.1 0175.0 -53222.9 58272.6 23727.9 1	12° 35.5'	
•	12° 35.3'	

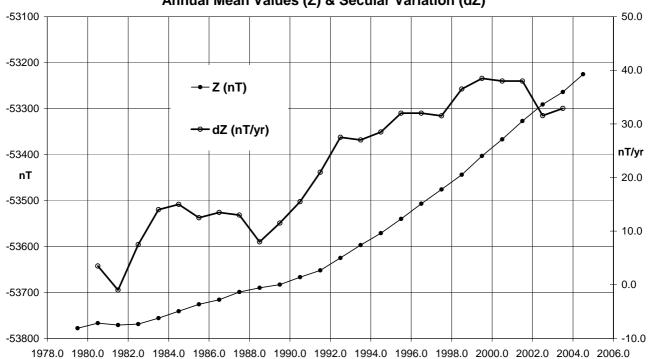

(Calculated: 14:49 hrs., Wed., 11 Jan. 2006)

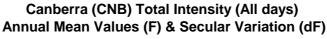
Hourly Mean Values

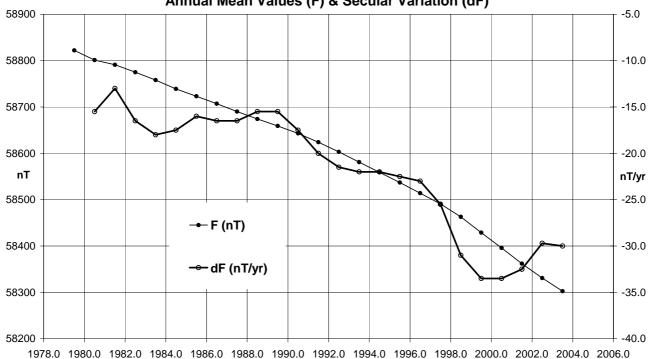

The charts on the following pages are plots of hourly mean values.


The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense.

The mean value given at the top of each plot is the *all-days* annual mean value of the element.







Canberra (CNB) Vertical Intensity (All days) Annual Mean Values (Z) & Secular Variation (dZ)

	Year	Days		D		I	Н	Х	Υ	Z	F	Elts*
			(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
	1983.5	D	12	16.6	-66	12.3	23706	23163	5040	-53760	58754	DFI
	1984.5	D	12	18.4	-66	12.7	23691	23146	5049	-53745	58735	DFI
	1985.5	D	12	20.5	-66	12.4	23690	23142	5064	-53729	58719	DFI
	1986.5	D	12	23.3	-66	12.9	23675	23123	5079	-53717	58703	DFI
	1987.5	D	12	25.5	-66	12.6	23674	23120	5094	-53701	58688	DFI
	1988.5	D	12	27.5	-66	13.8	23647	23091	5102	-53693	58670	DFI
	1989.5	D	12	29.0	-66	15.5	23615	23057	5105	-53690	58654	DFI
	1990.5	D	12	30.5	-66	14.8	23619	23059	5116	-53671	58639	DFI
	1991.5	D	12	31.6	-66	15.5	23600	23038	5119	-53658	58618	DFI
	1992.5	D	12	32.3	-66	14.1	23615	23052	5127	-53630	58600	DFI
	1993.5	D	12	33.0	-66	12.7	23628	23064	5134	-53601	58578	DFI
	1994.5	D	12	33.4	-66	11.8	23633	23068	5138	-53574	58555	DFI
	1995.5	D	12	33.8	-66	10.0	23652	23086	5145	-53542	58533	DFI
	1996.5	D	12	34.2	-66	7.9	23676	23108	5152	-53508	58512	ABC
	1997.5	D	12	34.1	-66	6.9	23683	23115	5154	-53479	58488	ABC
	1998.5	D	12	34.2	-66	6.4	23678	23110	5153	-53450	58459	ABC
	1999.5	D	12	34.1	-66	4.6	23692	23124	5156	-53407	58427	ABC
:	2000.5	D	12	34.2	-66	4.2	23685	23117	5155	-53372	58392	ABC
	2001.5	D	12	34.6	-66	2.7	23695	23126	5159	-53331	58358	ABC
	2002.5	D	12	35.2	-66	1.6	23700	23130	5165	-53296	58328	ABC
	2003.5	D	12	35.4	-66	1.5	23688	23118	5163	-53266	58295	ABC
:	2004.5	D	12	35.3	-65	59.8	23702	23132	5166	-53229	58267	ABC

^{*} Elements ABC indicates non-aligned variometer orientation

MACQUARIE ISLAND

Macquarie Island (Tasmania) is approximately 1,350 km. SSE of Hobart, about half way between Tasmania and the coast of the continent of Antarctica.

In December 1911 a magnetic station was first established at Caroline Cove at the southern end of Macquarie Island by Eric Webb. Another magnetic station, referred to as station A, was also established in 1911, on the Macquarie Island isthmus at the northern end of the island. Station A was re-occupied in 1930 by the British Australian New Zealand Antarctic Expedition (BANZARE) and again in 1948 by the first Australian National Antarctic Research Expedition (ANARE).

The Macquarie Island magnetic observatory was built at the ANARE station on the isthmus and magnetic recording has been continuous since 1952. The observatory was upgraded to produce digital data in October 1984. Data recording was upgraded to one second sampling rates in 1993. The Macquarie Island Magnetic Observatory was accepted as an INTERMAGNET Magnetic Observatory in March 2002.

The observatory consists of a Variometer House some 100 metres south of the office in the station's Science building; an Absolute House about 30 metres further south; and a PPM Variometer House between the Variometer and Absolute Houses. During summer, the area around the huts is used by elephant seals for breeding, so all cables and power to the huts are routed underground.

Key data for Macquarie Island Observatory:

3-character IAGA code: MCQ
Commenced operation: 1952
Geographic latitude: 54° 30' S
Geographic longitude: 158°57' E
Geomagnetic†: Lat. -59.87°; Long. 244.01°
Lower limit for K index of 9: 1500 nT
Principal pier identification: Pier AE

Key data (cont.)

Azimuth of principal reference (Pillar NMI from Pier AE): 353° 44' 13"

Distance to Pillar NMI: ~200 metres

Observers in Charge: H. Banon (2003/04) S. Redfern (2004/05)

Variometers

The equipment employed to monitor magnetic variations at MCQ in 2004 included an Elsec 820M3 PPM for measuring the magnetic total intensity and a Narod 3-axis ringcore fluxgate (RCF) magnetometer. The RCF sensors, mounted on a marble 'tombstone' base, were not aligned with either the standard field elements or cardinal points, but were oriented in such a way that the three mutually orthogonal components recorded were of approximately equal magnitudes. At Macquarie Island the magnetic field vector is approximately 11 degrees off-vertical and each ring-core sensor made an angle of approximately 55 degrees with the magnetic vector. Details of the 'tombstone' RCF sensor base and the orientation of the sensors were given in the section on Variometer Alignment in AGRs 1993-1996.

The RCF sensors were located in the VARIOMETER HOUSE and the associated electronics were in the ante-room of that building. The VARIOMETER HOUSE temperature was controlled with a heating system. The variometer PPM sensor and electronics were situated in the PPM HOUSE, which had no temperature control. The data acquisition system and backup power were situated in the office, within the Science building.

On 19 August 2004 installation of a new DMI three axis fluxgate magnetometer commenced on the NE pillar of the VARIOMETER HOUSE. The new DMI magnetometer was in addition to the existing Narod RCF variometer on the SE pillar of the VARIOMETER HOUSE. The DMI electronics were housed in an insulated box on the floor of the VARIOMETER HOUSE.

Elevation of top of Pier AE:

8 metres AMSL

[†] Based on the IGRF 2000.0 model updated to 2004.5

Variometers - MCO (cont.)

A wireless TCP/IP network link was installed to connect the VARIOMETER HOUSE to the Macquarie Island Local Area Network. An industrial PC running the QNX operating system was installed in the ante-room of the VARIOMETER HOUSE to acquire and log data from both the DMI variometer and also the Narod RCF variometer. The QNX PC was connected to the local network. A GPS clock was installed on the VARIOMETER HOUSE to provide accurate timing for the QNX data logging system.

The installation was completed on 30 August 2004. The original data logging system remained unaltered and data recorded from the Narod RCF and PPM magnetometers on the old acquisition system remained as the primary source of data throughout 2004.

Absolute Instruments and Corrections

Magnetic absolute measurements were performed in the ABSOLUTE HOUSE: on the principal pier AE with an Elsec 810 DIM (serial 214) and a Zeiss020B theodolite (serial 311847) and on pier AW with an Austral PPM (serial 525) until 17 May 2004. From 18 May a GSM90 proton magnetometer (serial 3091319 with sensor no. 01504) became the primary absolute total field magnetometer. An HP palmtop computer was used to communicate with the GSM90 magnetometer. The Austral PPM remained on-site as a back-up instrument.

The classical QHMs (serial 178, 179 on Askania circle 640616) were available as backup for use on pier AE.

A pier difference of:

```
\Delta X = -2.6nT, \Delta Y = +5.1nT, \Delta Z = +4.2nT (\Delta F = -4.1nT) was applied to adjust observations performed on pier Aw to be equivalent to observations on the principal Pier AE. This was adopted from pier difference absolute observations performed in 1991 and 1993 (confirmed by 2003 observations).
```

Instrument comparisons between the Macquarie Island absolute instruments (E810_214/311847 DIM and Austral 525) and travelling reference instruments (B0806H/100856 DIM and GSM90_003985/11690) were performed at Macquarie Island on 24 and 26 Mar 2003. GSM90_3091319 was compared to the Australian Reference at Canberra Observatory on 02 Dec 2003

The results of the instrument comparisons were:

```
<u>Travelling Reference</u> <u>MCQ instrument</u> <u>Inst. difference</u> 
GSM90_003985 - Austral 525 PPM = +0.38nT (F) 
B0806H/100856 - E810_214/311847 = +0.19' (D) 
B0806H/100856 - E810_214/311847 = +0.04' (I)
```

Comparisons between the travelling reference instruments and the Australian Reference instruments were performed on 03-04 March 2003 at CNB observatory. These comparisons resulted in the adoption of instrument differences of:

0nT, 0.0' and 0.0' in F, D, and I respectively.

Corrections to the MCQ instruments are therefore:

```
        Australian Reference
        MCQ instrument
        Inst. correction

        GSM90_905926* -
        Austral 525
        = +0.38nT (F)

        E810_200/353756 -
        E810_214/311847 = +0.19' (D)

        E810_200/353756 -
        E810_214/311847 = +0.04' (I)

        GSM90_905926* -
        GSM90_3091319** = 0.0nT (F)

        * with sensor 21867
        ** with sensor 01504
```

At the mean 2004 field values at MCQ of 10823nT, 6456nT and -63134nT in X, Y and Z respectively, the instrument corrections adopted for the absolute magnetometers used at MCQ during that year convert to the baseline corrections:

01 Jan to 18 May 2004:

```
\Delta X = +0.34 \text{ nT} \Delta Y = +1.01 \text{ nT} \Delta Z = -0.23 \text{ nT}.
18 May to 31 Dec. 2004:
\Delta X = +0.28 \text{ nT} \Delta Y = +0.97 \text{ nT} \Delta Z = +0.15 \text{ nT}.
```

Absolute Instruments and Corrections (cont.)

These corrections have been applied to all MCQ 2004 final data including in this report.

Baselines

The standard deviations in the difference between the weekly absolute observations and the final adopted variometer model and data were:

$$\sigma_X = 1.5 \text{ nT}$$
 $\sigma_Y = 1.7 \text{ nT}$ $\sigma_Z = 1.2 \text{ nT}$.

(In terms of the absolute observed components, they were:

$$\sigma_F = 1.2 \text{ nT}$$
 $\sigma_D = 28$ " $\sigma_I = 5$ ".)

The drifts applied to the X, Y, and Z baselines amounted to less than 20nT in any of these components throughout the 2004, with the Y component showing the most drift and the Z component the least drift. There were several sudden jumps in the baseline throughout 2004, the largest being 10nT in the X-component on 24 December 2004.

Throughout the year there was about 5nT variation in the difference between F measured with the fluxgate (final data model with drifts applied) and the variometer PPM.

Operations

The magnetic observers-in-charge at Macquarie Island in 2004 were supported jointly by the Australian Antarctic Division (AAD) in the Department of The Environment and Heritage and GA. They were members of the Australian National Antarctic Research Expedition (ANARE).

The duties of the magnetic observer included maintaining the equipment, performing absolute observations to calibrate the variometers, and maintaining the integrity of the observatory and reporting any changes to GA in Canberra.

During 2004, weekly absolute calibrations were performed on the observation piers in the ABSOLUTE HOUSE by the ANARE communications technical officers: the 2003/04 officer (HB) (from 27 March 2003) until 07 March 2004; and the 2004/05 officer (SR) from 08 March 2004 (until 27 March 2005).

The RCF variometer produced 8 samples per second that were averaged and output as 1-second data. The PPM variometer produced 10-second samples. The 1-second RCF data and 10-second PPM data as well as 1-minute means of both were recorded on an acquisition PC. All data were automatically transmitted daily, via a network connection routed through the Australian Antarctic Division in Hobart Tasmania, to GA where they were processed and distributed. Timing control at the observatory was provided by the Antarctic Division's GPS clock (which was also used with Atmospheric and Space Physics experiments).

During August 2004 a wireless network connection was installed to connect the Variometer House to the Macquarie Island Local Area Network; a second 3-axis fluxgate variometer, a DMI suspended FGE system digitised using an ADAM4017 A/D unit, was installed in the Variometer House; a computer acquisition system running the QNX6.1 operating system was also installed in the Variometer House, as was a GPS clock to provide timing for the new system.

The new computer acquisition system logged data from both the new DMI variometer and the existing Narod variometer. Data from this new dual system was automatically retrieved once per day via the network connection.

The existing DOS acquisition system continued unaltered, to log the Narod RCF data and E820 PPM data as the primary system. The installation of the new system caused contamination of the data from this primary system over the period 19–30 August 2004.

Distribution of MCQ data

Preliminary Monthly Means for Project Ørsted

• Sent monthly by email to IPGP

1-minute and Hourly Mean Values to WDCs

- 2003 data: WDC-A, Boulder, USA (sent 03 Mar. 2004)
- 2004 data: WDC-A, Boulder, USA (sent 10 Jan. 2006)

1-minute Values for Project INTERMAGNET

- Preliminary data daily to the Edinburgh GIN by e-mail.
- 2003 data to the Paris GIN on 03 Mar. 2004
- 2004 data to the Paris GIN on 19 Aug. 2005

Significant Events in 2004

- 26 Jan. 2300 to 27/0100. Communications outage.
- 24 Feb. No response from DOS acquisition PC. QNX4 is operating. Acquisition PC had failed.
- 25 Feb 03:52:54 (according to system clock but the timing was about 40 seconds slow) Replacement PC (old MACQ V0314 PC) was installed. Clock set remotely (from GA) at 22:18:00 although it may still be a few seconds out due to communications delays.
- 26 Feb Local OIC set timing exactly and confirmed that one minute time marks were received. All communications to Antarctic stations were down due to fibre-optic problems in Sydney.
- 08 Mar First observation by 2004/05 observer (SR).
- 18 May First routine observations with GSM90_3091319 and 01504 using PDA for data communications.

 Instrument and pier comparisons performed with Austral525 and GSM90_3091319 PPMs.
- 21 May New QNX6 computer networked in Science Building. Test being undertaken.
- 23 Jun $\,$ 0220 (approx): Local observer (SR) entered the $\,$ Variometer Hut.
- 07 Jul 0116–0134 and 0148–0213: Local observer (SR) in VARIOMETER HUT to prepare for new equipment installations.
- 08 Jul 0430-0500: Local observer (SR) in Variometer Hut.
- 11 Jul 2316–2326: Encroachment in magnetic quiet zone.
- 12 Jul 0000–0010: Encroachment in magnetic quiet zone A number of sudden jumps in XYZ throughout the day.
- 05 Aug 0342: Clock of QNX4 OS was set.
- 20 Aug Installation of network link from Variometer to Communications Building
- 24 Aug Problems with wireless network link WaveRider radios.
- 25 Aug Radio link between VARIOMETER HUT and Science Building configured and working.
- 26 Aug Steel bolts in radio link antenna mount on Variometer House replaced with non-magnetic bolts. Power point installed in the roof space for the WaveRider radio link. Observations performed after all work completed.
- 27 Aug Another new power point installed in VARIOMETER HUT by electrician who unknowingly tripped circuit breaker in Science Building causing the UPS to cut in. New variometer equipment installed, but sensor not yet aligned due to minor problems.
- 28 Aug 0003: Primary system restarted after UPS exhaused.
- 29 Aug 22:55:10 Primary system timing reset. Has been 5 seconds slow since restart on 28 August.

Significant Events (cont.)

- 31 Aug Numerous visits into VARIOMETER HUT to get new DMI system operational.
- 01 Sep First absolute observation after DMI system installed.
- 03 Sep 0056: Gdap clock stopped and restarted as GPS clock not operating on Gdap.
- 11 Sep 2240 (approx.): Gdap system stopped data recording. PC is still running satisfactorily.
- 13 Sep 23:45 (approx.): Narod variometer connected to Gdap system. New installation photographed.
- 14 Sep Gdap system rebooted to restart DMI logging and start Narod logging.
- 21 Sep Fence at back of ABSOLUTE HUT found to have been damaged by seals.
- Sep. Seals knocked open the door to the PPM Hut. The exact date is not known.
- 01 Oct Time on QNX4 acquisition system set.

 Approximately 500 1-second samples lost on primary
 Narod data between 1310 and 1338 (no whole minute of data was lost.)
- 20 Oct 0030–0545: Data (mostly F and Z) contaminated during repairs to ABSOLUTE HUT seal-fence.
- 21 Oct 0100–0255, 0430–0435: Repairs to Absolute Hut seal fence continued.

 Work on radio link in Science building.

 Gdap system rebooted.
- 25 Oct Experiment with absolute GSM90 PPM tuning left it on $64\mu T$.
- 08 Nov 0133: Set QNX4 OS and RT clock at (OS clock was ~7 minutes fast)
- 23 Nov 0600: Network outage during maintenance at AAD in Hobart.
- 02 Dec ~0500: Timing set by local observer after it was noted that that the DOS system was about 5 seconds slow
- 24 Dec Could not communicate to QNX6 by telnet. System rebooted by local observer.

Data losses in 2004

- 22 Feb. 0000 to 25 / 0352 (3d 03h 53m) All data channels: Data acquisition PC failure.
- 07 Mar. 2201 (1 min.) F-channel only.
- 13 Jun 2048–2220 (1h 33m)
- 27 Aug. 0848 to 28 / 0003 (15h 16m) X,Y,Z channels; 0848 to 28 / 0006 (15h 19m) F channel;
- 28 Aug. 0008 (1 min.) F-channel.

The data (all channels) acquired over the following intervals were contaminated and so omitted from processing:

- 13 Jun. 2045–2245 (2h 01m) RCF failure with X,Y,Z channels all a constant non-zero value.
- 09 Jul. 0434–1120 (6h 47m) 2235–2245 (11 mins)
- 11 Jul. 1829-1850 (22 mins)
- 19 Aug. 2300 to 30 / 0300 (10d 04h 01m)
- 20 Oct. 0025–0515 (4h 51m)
- 21 Oct. 0145-0340 (1h 56m)
- 24 Dec. 0156-0157 (2 mins) RCF baseline jump.

Macquarie Island Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month. Plots of these data with secular variation in H, D, Z & F are on pages 82 & 83.

Year	Days		D		ı	н	Х	Υ	Z	F	Elts*
	, -	(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
1993.5	Α	29	57.2	-78	48.1	12558	10880	6270	-63428	64659	ABC
1994.5	Α	30	02.2	-78	48.3	12549	10863	6281	-63404	64634	ABC
1995.5	Α	30	06.6	-78	47.5	12559	10864	6300	-63376	64608	ABC
1996.5	Α	30	11.0	-78	46.4	12574	10870	6322	-63353	64589	ABC
1997.5	Α	30	15.4	-78	45.9	12580	10866	6339	-63336	64573	ABC
1998.5	Α	30	20.0	-78	45.8	12579	10857	6353	-63320	64557	ABC
1999.5	A	30	23.6	-78	45.2	12586	10856	6367	-63294	64534	ABC
2000.5	A	30	28.4	-78	45.0	12585	10847	6382	-63268	64507	ABC
2001.5 2002.5	A A	30 30	33.5 39.1	-78 -78	44.1 43.5	12595 12600	10846 10840	6404 6424	-63231 -63198	64473 64442	ABC ABC
2002.5	Ā	30	44.6	-78	44.0	12585	10817	6433	-63174	64416	ABC
2004.5	A	30	49.0	-78	42.7	12602	10823	6456	-63134	64380	ABC
1951.5		23	50.8	-78	17.6	13383	12241	5411	-64589	65961	HDZ
1952.5		24	04.2	-78	17.8	13371	12208	5453	-64550	65920	HDZ
1953.5		24	14.6	-78	18.2	13360	12182	5486	-64533	65901	HDZ
1954.5		24	28.4	-78	18.4	13356	12156	5533	-64535	65903	HDZ
1955.5		24	42.0	-78	18.6	13350	12129	5579	-64520	65887	HDZ
1956.5		24	53.2	-78	19.3	13333	12095	5611	-64506	65870	HDZ
1957.5		25	05.7	-78	19.8	13319	12062	5649	-64482	65843	HDZ
1958.5		25	16.6	-78	20.1	13307	12033	5682	-64456	65815	HDZ
1959.5		25	26.3	-78	20.9	13288	12000	5708 5716	-64436	65792	HDZ
1960.5 1961.5		25 25	32.0 50.0	-78 -78	22.0 22.5	13262 13240	11967 11917	5716 5769	-64414 -64359	65765 65707	HDZ HDZ
1961.5		26	05.8	-78 -78	23.3	13216	11869	5814	-64321	65665	HDZ
1963.5		26	08.5	-78	24.2	13193	11843	5813	-64294	65634	HDZ
1964.5		26	17.0	-78	24.7	13174	11812	5834	-64249	65586	HDZ
1965.5		26	28.6	-78	25.5	13152	11773	5864	-64214	65547	HDZ
1966.5		26	37.6	-78	26.7	13121	11729	5881	-64175	65503	HDZ
1967.5		26	46.5	-78	28.5	13084	11681	5894	-64166	65486	HDZ
1968.5		26	54.7	-78	29.7	13053	11639	5908	-64132	65447	HDZ
1969.5		27	02.3	-78	30.8	13026	11602	5921	-64099	65409	HDZ
1970.5		27	09.6	-78	32.1	12996	11563	5932	-64078	65383	HDZ
1971.5 1972.5		27 27	13.3 22.1	-78 -78	33.3 34.4	12963 12937	11527 11489	5930 5947	-64032 -64008	65331 65302	HDZ HDZ
1973.5 1974.5		27 27	27.6 34.3	-78 -78	35.8 37.6	12905 12865	11451 11404	5951 5955	-63985 -63956	65273 65237	HDZ HDZ
1974.5		27	43.2	-78 -78	38.2	12847	11373	5976	-63926	65204	HDZ
1976.5		27	51.6	-78	39.1	12822	11376	5992	-63891	65165	HDZ
1977.5		27	59.8	-78	39.9	12802	11304	6010	-63861	65132	HDZ
1978.5		28	11.3	-78	41.1	12773	11258	6034	-63838	65103	HDZ
1979.5		28	19.6	-78	42.3	12745	11219	6047	-63807	65067	HDZ
1980.5		28	28.8	-78	43.0	12723	11183	6067	-63768	65025	HDZ
1981.5		28	37.5	-78	44.5	12687	11136	6078	-63735	64985	HDZ
1982.5		28	49.5	-78	45.4	12666	11097	6107	-63711	64958	HDZ
1983.5		28	54.9	-78 -70	45.7	12652	11075	6117	-63674	64919	HDZ
1984.5 1985.5		29	03.7 12.0	-78 -78	46.1 47.4	12640 12608	11049 11006	6140 6151	-63650 -63619	64893 64856	HDZ XYZ
1986.5		29 29	19.0	-78 -78	47.5	12600	10986	6169	-63590	64826	XYZ
1987.5		29	26.8	-78	47.8	12593	10966	6191	-63584	64819	XYZ
1988.5		29	32.2	-78	47.8	12590	10954	6207	-63560	64795	XYZ
1989.5		29	37.8	-78	47.8	12587	10941	6223	-63552	64786	XYZ
1990.5		29	42.8	-78	48.0	12577	10923	6234	-63519	64752	XYZ
1991.5		29	47.6	-78	47.6	12578	10915	6250	-63487	64721	XYZ
1992.5		29	53.0	-78	47.5	12573	10901	6264	-63447	64681	XYZ
1993.5	Q	29	56.9	-78	47.2	12575	10896	6277	-63427	64661	ABC
1994.5	Q	30	01.5	-78	47.0	12574	10887	6292	-63403	64637	ABC
1995.5	Q	30	06.2	-78 -70	46.5	12577	10881	6308	-63377	64613	ABC
1996.5	Q	30	10.5	-78 79	45.9	12585	10879	6326	-63356	64594	ABC
1997.5	Q	30	15.2	-78	45.4 45.1	12591	10876	6344	-63336 63331	64576	ABC ABC
1998.5 1999.5	Q Q	30 30	19.7 23.5	-78 -78	45.1 44.6	12593 12598	10870 10867	6359 6373	-63321 -63293	64562 64535	ABC
2000.5	Q	30	28.3	-78 -78	44.6	12598	10867	6389	-63293 -63266	64509	ABC
2000.5	Q	30	33.3	-78	43.4	12608	10857	6409	-63229	64474	ABC
2002.5	Q	30	38.9	-78	42.8	12613	10851	6429	-63196	64442	ABC
2003.5	Q	30	43.7	-78	42.6	12611	10841	6444	-63170	64417	ABC
										ntinued on pa	

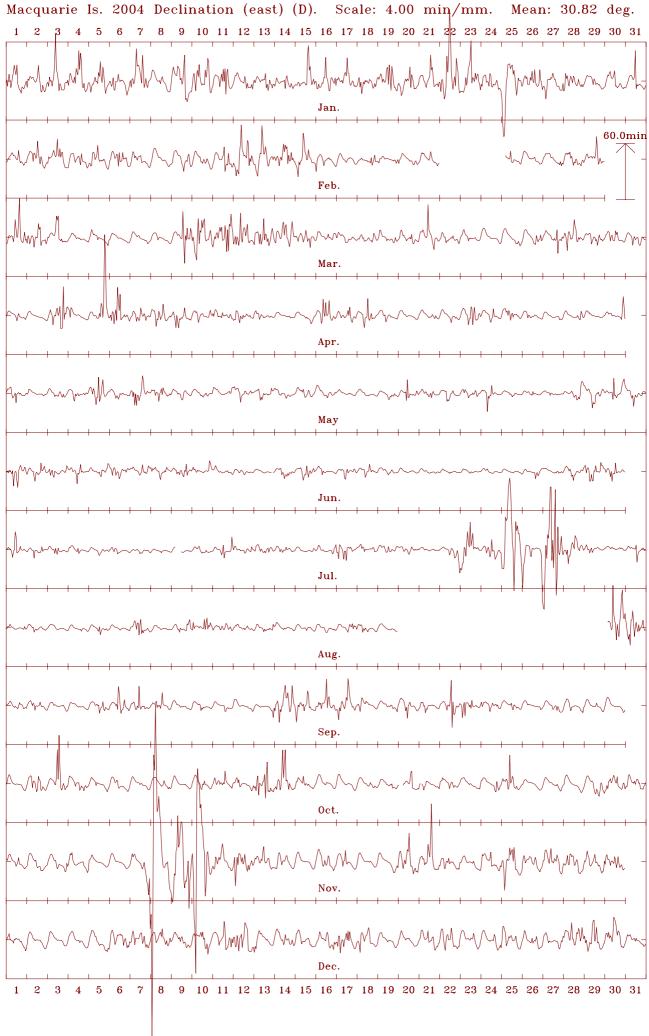
Monthly and Annual Mean Values

The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

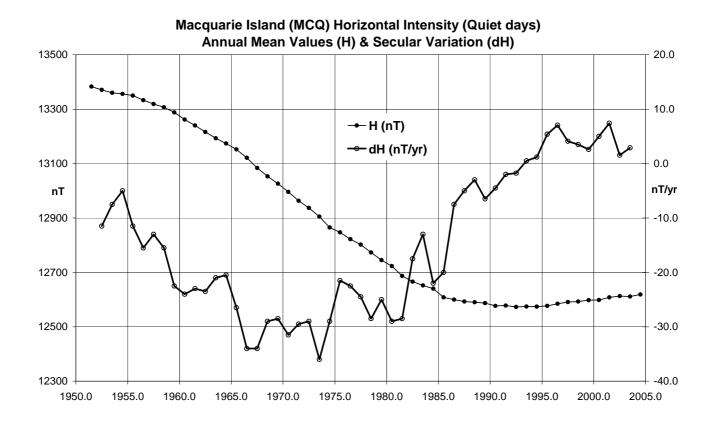
Macquarie Island	2004	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	1
January	All days	10805.2	6438.8	-63147.8	64388.5	12578.2	30° 47.5'	-78° 44.1'
	5xQ days	10828.2	6448.3	-63142.9	64388.3	12602.8	30° 46.4'	-78° 42.8'
	5xD days	10765.5	6421.1	-63182.5	64414.5	12535.3	30° 49.0'	-78° 46.7'
February	All days	10819.5	6444.0	-63146.0	64389.6	12593.1	30° 46.7'	-78° 43.3'
	5xQ days	10837.5	6453.7	-63142.5	64390.0	12613.6	30° 46.4'	-78° 42.2'
	5xD days	10780.2	6423.5	-63160.0	64394.8	12549.0	30° 47.4'	-78° 45.8'
March	All days	10812.3	6445.5	-63135.2	64377.9	12587.7	30° 48.0′	-78° 43.5'
	5xQ days	10840.9	6459.4	-63139.9	64388.6	12619.4	30° 47.3'	-78° 41.9'
	5xD days	10778.5	6428.5	-63128.4	64364.0	12550.0	30° 48.8′	-78° 45.4'
April	All days	10821.3	6454.4	-63144.1	64389.0	12600.0	30° 48.9′	-78° 42.9'
	5xQ days	10837.3	6462.0	-63144.8	64393.1	12617.7	30° 48.4'	-78° 42.0'
	5xD days	10771.0	6431.2	-63136.5	64371.0	12545.0	30° 50.5′	-78° 45.7'
May	All days	10834.0	6460.9	-63135.4	64383.3	12614.3	30° 48.6′	-78° 42.1'
	5xQ days	10839.5	6464.6	-63136.5	64385.6	12620.9	30° 48.7'	-78° 41.7'
	5xD days	10826.8	6456.2	-63125.7	64372.1	12605.7	30° 48.5′	-78° 42.4'
June	All days	10840.3	6463.8	-63131.0	64380.3	12621.2	30° 48.4′	-78° 41.7'
	5xQ days	10843.6	6465.6	-63128.7	64378.7	12624.9	30° 48.3'	-78° 41.4'
	5xD days	10837.5	6461.2	-63125.2	64373.8	12617.5	30° 48.2′	-78° 41.8'
July	All days	10815.4	6451.5	-63135.9	64379.8	12593.5	30° 49.0'	-78° 43.2'
•	5xQ days	10845.2	6464.4	-63132.0	64382.1	12625.6	30° 47.8'	-78° 41.4'
	5xD days	10697.0	6390.5	-63150.5	64369.3	12461.1	30° 51.4'	-78° 50.3'
August	All days	10822.6	6462.6	-63133.6	64379.7	12605.4	30° 50.6'	-78° 42.5'
	5xQ days	10832.1	6464.9	-63138.3	64386.1	12614.7	30° 49.8'	-78° 42.1'
	5xD days	10757.5	6437.5	-63124.6	64357.7	12536.7	30° 53.9'	-78° 46.0'
September	All days	10830.7	6464.0	-63133.7	64381.3	12613.0	30° 49.8'	-78° 42.1'
	5xQ days	10834.1	6463.9	-63135.2	64383.3	12615.9	30° 49.3'	-78° 42.0'
	5xD days	10811.1	6458.7	-63129.4	64373.4	12593.5	30° 51.3'	-78° 43.1'
October	All days	10831.6	6465.0	-63120.2	64368.4	12614.3	30° 49.9'	-78° 41.9'
	5xQ days	10842.4	6470.7	-63120.6	64371.1	12626.5	30° 49.7'	-78° 41.3'
	5xD days	10816.5	6456.7	-63124.4	64369.2	12597.1	30° 50.1'	-78° 42.9'
November	All days	10814.7	6457.3	-63127.8	64372.3	12596.1	30° 50.5'	-78° 43.0'
	5xQ days	10834.2	6468.3	-63123.2	64372.1	12618.2	30° 50.3'	-78° 41.7'
	5xD days	10747.9	6426.8	-63121.4	64352.4	12524.0	30° 52.9'	-78° 46.7'
December	All days	10828.0	6462.8	-63119.0	64366.4	12610.0	30° 49.9'	-78° 42.1'
	5xQ days	10839.0	6468.0	-63122.2	64371.8	12622.1	30° 49.6'	-78° 41.5'
	5xD days	10810.1	6453.7	-63127.9	64371.3	12590.1	30° 50.3'	-78° 43.3'
Annual	All days	10922.0	6455.0	-63134.2	64379.7	12602.2	30° 40 0'	-78° 42.7'
Annual Mean	All days 5xQ days	10823.0 10837.8	6455.9 6462.8	-63134.2 -63133.9	64382.6	12602.2 12618.5	30° 49.0′ 30° 48.5′	-78° 42.7 -78° 41.8'
Values	5xQ days 5xD days	10037.8	6437.1	-63136.4	64373.6	12558.8	30° 50.2'	-78° 45.0'
values	JAD days	10703.3	U 4 37.1	-03130.4	U 1 0/3.0	12000.0	30 30.2	-70 40.0

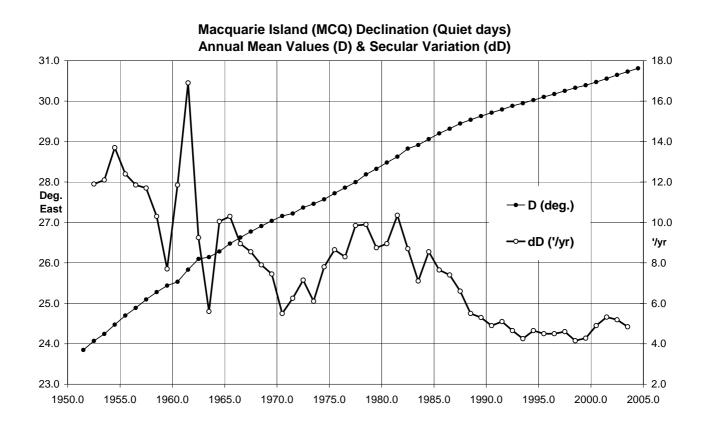
(Calculated: 15:33 hrs., Fri., 15 Apr. 2005)

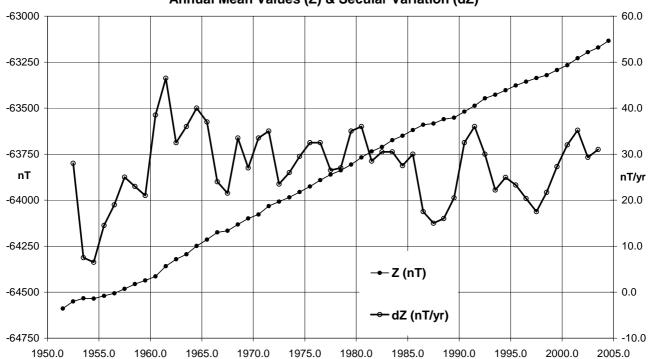

Hourly Mean Values

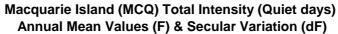
The charts on the following pages are plots of hourly mean values.

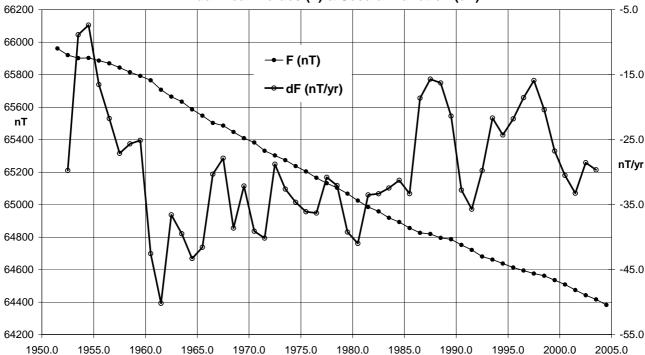
The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense.


The mean value given at the top of each plot is the *all-days* annual mean value of the element.









Macquarie Island (MCQ) Vertical Intensity (Quiet days) Annual Mean Values (Z) & Secular Variation (dZ)

Year	Days	(Deg	D Min)	(Deg	l Min)	H (nT)	X (nT)	Y (nT)	Z (nT)	F (nT)	Elts*
 2004.5	Q	30	48.5	-78	41.8	12619	10838	6463	-63134	64383	ABC
1993.5	D	29	58.5	-78	50.0	12521	10846	6256	-63429	64654	ABC
1994.5 1995.5	D D	30 30	03.3 07.8	-78 -78	50.2 49.4	12514 12522	10831 10830	6267 6285	-63408 -63376	64632 64601	ABC ABC
1996.5 1997.5	D	30	11.9	-78	47.4	12556	10852	6316	-63350	64583	ABC
1997.5	D D	30 30	16.0 21.0	-78 -78	47.3 47.7	12555 12543	10843 10824	6328 6338	-63334 -63320	64566 64550	ABC ABC
1999.5 2000.5	D D	30 30	24.3 29.0	-78 -78	46.4 46.7	12564 12554	10836 10819	6358 6368	-63297 -63273	64532 64507	ABC ABC
2000.5	D	30	34.6	-78	46.7	12554	10819	6389	-63238	64473	ABC
2002.5 2003.5	D D	30 30	40.0 46.6	-78 -78	44.8 46.8	12574 12534	10816 10769	6413 6413	-63198 -63186	64437 64418	ABC ABC
2003.5	D	30	50.2	-78	45.0	12559	10783	6437	-63136	64374	ABC

^{*} Elements ABC indicates non-aligned variometer orientation

CASEY OBSERVATORY

Casey is the Australian Antarctic station nearest to Australia, situated 3880km south of Perth. The magnetic ABSOLUTE HUT is about 120 metres south of the tank house, the structure of the modern Casey station nearest to it. The old Casey station, in use until the late 1980s, lies about 1km to the north-east of the present Casey.

The crystalline rocks of Casey have unusually high concentrations of magnetic minerals producing high magnetic gradients in and around the magnetic ABSOLUTE HUT.

Regular magnetic observations have been made at Casey since 1975. A variation station operated from 1988 and from 1991 to 1998 it operated as a magnetic observatory although not to a high standard. Observatory standard absolute control was achieved in 1999. A more detailed history of the Casey (and Wilkes) observatory was given in the *AGRs* 1999-2002.

Key data for Casey Station (AAT) Observatory:

3-character IAGA code: CSY
 Commenced operation: see above
 Geographic latitude: 66° 17' S
 Geographic longitude: 110°32' E
 Geomagnetic[†]: Lat. -76.33°; Long. 183.86°

Lower limit for K index of 9: n.a.
 Principal pier identification: Pier A

• Elevation of top of Pier A: 40 metres AMSL

• Azimuth of principal reference

(Pillar G11 from Pier A): 307° 41' 02"
Distance to Pillar G11: not recorded
Observers in Charge: M. Paterson (AAD)

† Based on the IGRF 2000.0 model updated to 2004.5

Variometers

An Antarctic Division EDA FM105B fluxgate variometer, with its data acquired by PC, operated at Casey throughout 2004. The fluxgate sensors were housed on the hill about 300m west of the Casey Science building. The sensors were aligned close to true north, true east and vertical. The temperatures were maintained at 20°C. Further description is in Crosthwaite (1999). No total field variometer operated at Casey during 2004.

Absolute Instruments and Corrections

Magnetometers used to calibrate the recording variometers at Casey were Elsec 810 DIM no. 2591 with Zeiss020B theodolite no. 356514 (owned by the Australian Antarctic Division), and Geometrics 816 no. 766 PPM, (owned by GA). A QHM and QHM circles were available as a backup in the event that one of the primary instruments became unserviceable.

For consistency with the Australian Magnetic Reference magnetometers held at Canberra, a correction of +0.7nT has been applied to the absolute PPM readings. Corrections of zero were applied to the DIM readings. These resulted in baseline corrections of:

$$\Delta X = -0.01 \text{ nT}$$
 $\Delta Y = -0.10 \text{ nT}$ $\Delta Z = -0.69 \text{ nT}$.

Because of the extreme magnetic gradients at Casey, it has been necessary to apply a correction to magnetic data from the station acquired since early 1993. QHMs were used at Casey until 1993, and DIMs since that time. The 70mm difference in sensor heights between the two instruments required the following corrections to DIM/PPM readings to produce equivalent QHM/PPM readings (with the PPM height similarly adjusted):

$$\Delta D = +15.1'$$
 $\Delta I = +0.2'$ $\Delta F = +45 \text{ nT}$
 $(\Delta X = +42 \text{ nT})$ $\Delta Y = -11.5 \text{ nT}$ $\Delta Z = -44 \text{ nT})$

It is desirable that a new absolute observation house and pier be located on a more suitable site. A site with gradients of about 10nT per metre was chosen during a maintenance visit by a GA officer in the 1998/99 summer (Crosthwaite 1999).

Casey Annual Mean Values

The table below gives annual mean values for Casey station. Until 1990 these were calculated using the monthly average values of regular absolute observations, denoted by Ab. From 1991 they were gained using data from the AAD's fluxgate variometer that was calibrated through regular absolute observations. Until 1997 the means were calculated over the five quietest days at Mawson station, denoted Qm. From 1998 monthly means were calculated over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month, denoted A, Q and D respectively.

Plots of these data with secular variation in H, D, Z & F are on the pages 91 & 92.

Year	Days	(Deg	D Min)	(Deg	l Min)	H (nT)	X (nT)	Y (nT)	Z (nT)	F (nT)	Elts
1977.96		-88	29.6	-81	38.7	9495	250	-9492	-64650	65344	DHZ
1978.5	Ав	-89	4.3	-81	36.2	9518	154	-9516	-64488	65187	DHZ
1979.5	Ав	-89	21.6	-81	35.7	9525	106	-9524	-64469	65169	DHZ
1980.5	Ав	-89	31.5	-81	33.9	9568	79	-9568	-64528	65233	DHZ
1981.5	Ав	-88	2.1	-81	32.0	9540	327	-9534	-64083	64789	DHZ
1982.5	Ав	-90	10.0	-81	28.4	9650	-28	-9650	-64400	65120	DHZ
1983.5	Ав	-90	32.0	-81	31.5	9585	-89	-9585	-64326	65037	DHZ
1984.5	Ав	-90	50.0			9640	-140	-9639			DHZ
1985.5	Ав	-90	50.0	-81	25.9	9650	-140	-9649	-64067	64790	DHZ
1986.5	Ав	-90	52.9	-81	27.2	9634	-148	-9633	-64101	64821	DHZ
1987.5	Ав	-91	18.6	-81	29.1	9596	-219	-9593	-64097	64811	DHZ
1988.5	Ав	-91	28.4	-81	27.2	9630	-248	-9627	-64086	64805	DHZ
1989.5	Ав	-90	45.5	-81	23.5	9672	-128	-9671	-63887	64615	DHZ
1990.5	Ав	-91	55.0	-81	27.4	9601	-321	-9596	-63920	64637	DHZ
1991.5	Qм	-92	1.2	-81	25.0	9642	-340	-9636	-63881	64605	XYZ
1992.5	Qм	-92	10.0	-81	25.0	9637	-364	-9630	-63848	64571	XYZ
1993.5	Qм	-92	7.3	-81	25.0	9638	-357	-9631	-63852	64576	XYZ
1994.5	Qм	-92	17.1	-81	25.3	9629	-384	-9621	-63824	64547	XYZ
1995.5	Qм	-92	27.5	-81	25.6	9620	-413	-9611	-63807	64528	XYZ
1996.5	Qм	-92	35.4	-81	25.3	9625	-435	-9615	-63804	64526	XYZ
1997.5	Qм	-92	42.1	-81	25.2	9623	-454	-9612	-63774	64496	XYZ
1998.5	Q	-92	55.4	-81	25.7	9614	-490	-9601	-63777	64497	XYZ
1999.5	Q	-93	4.9	-81	26.5	9595	-516	-9581	-63762	64480	XYZ
2000.5	Q	-93	12.9	-81	27.0	9584	-537	-9568	-63749	64465	XYZ
2001.5	Q	-93	21.6	-81	27.9	9564	-561	-9548	-63729	64443	XYZ
2002.5	Q	-93	26.1	-81	28.3	9553	-572	-9536	-63708	64421	XYZ
2003.5	Q	-93	37.5	-81	29.4	9534	-603	-9514	-63713	64422	XYZ
2004.5	Q	-93	46.5	-81	30.5	9510	-626	-9489	-63691	64397	XYZ
1998.5	Α	-92	55.4	-81	25.7	9615	-490	-9602	-63785	64505	XYZ
1999.5	Α	-93	4.8	-81	26.4	9599	-516	-9585	-63772	64490	XYZ
2000.5	Α	-93	13.2	-81	27.0	9587	-538	-9571	-63759	64476	XYZ
2001.5	Α	-93	21.6	-81	27.9	9566	-561	-9549	-63733	64447	XYZ
2002.5	Α	-93	29.4	-81	28.4	9553	-582	-9535	-63719	64432	XYZ
2003.5	Α	-93	39.5	-81	29.5	9535	-608	-9515	-63730	64440	XYZ
2004.5	Α	-93	47.0	-81	30.4	9512	-628	-9491	-63701	64408	XYZ
1998.5	D	-92	58.2	-81	25.8	9615	-498	-9601	-63805	64526	XYZ
1999.5	D	-93	10.7	-81	26.6	9599	-532	-9583	-63796	64514	XYZ
2000.5	D	-93	13.6	-81	27.0	9588	-539	-9572	-63771	64487	XYZ
2001.5	D	-93	19.4	-81	27.8	9570	-555	-9553	-63746	64460	XYZ
2002.5	D	-93	37.4	-81	28.8	9549	-603	-9529	-63747	64458	XYZ
2002.5	D	-93	47.4	-81	30.2	9525	-629	-9503	-63764	64472	XYZ
2004.5	D	-93	47.8	-81	30.5	9513	-630	-9491	-63719	64425	XYZ
2004.0		50		01	00.0	3010	550	0 70 1	007 10	01720	A12

Operations

The magnetic observer-in-charge at Casey in 2004 was an officer of the Australian Antarctic Division, of the Commonwealth Department of the Environment and Heritage. He was a member of the Australian National Antarctic Research Expedition (ANARE). GA partially funded the position to enable the operation of the magnetic observatory to continue.

The magnetic observer performed approximately weekly absolute observations on the observation piers in the ABSOLUTE HOUSE to calibrate the variometers and provided regular reports to GA in Canberra.

The EDA variometer produced 1-second samples that were recorded on an AAD computer via their Analogue Data Acquisition System (ADAS). These were sent daily by ftp to GA where they were reformatted and used to produce calibrated minute, monthly and annual mean magnetic values.

There was no PPM variometer operating at Casey in 2004.

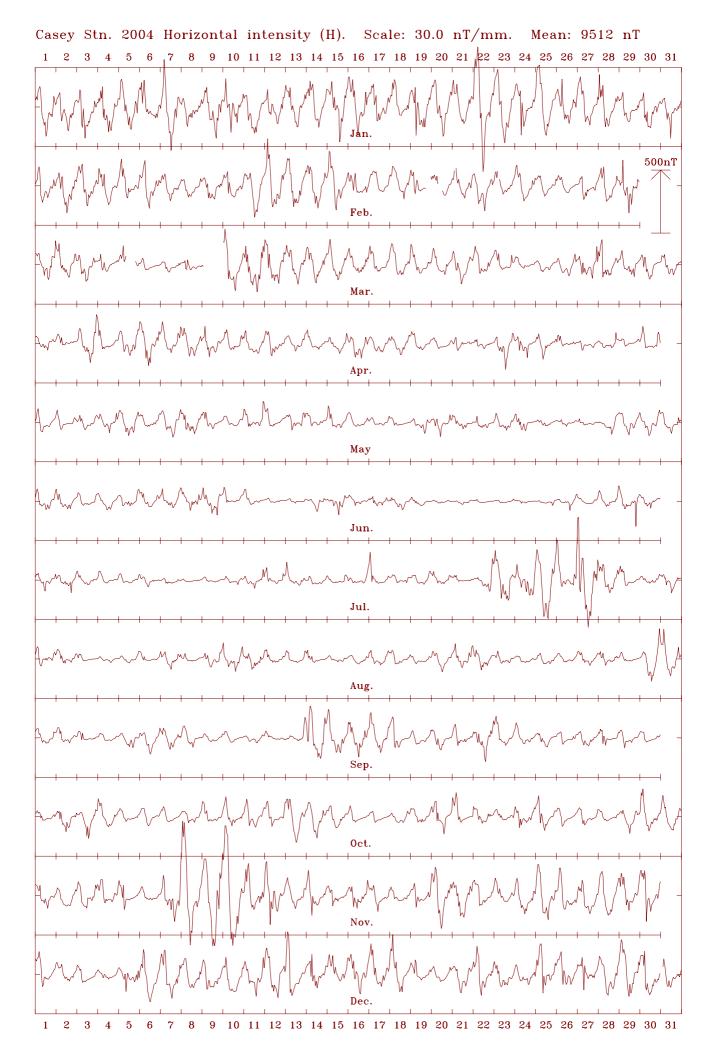
Throughout 2004 AAD performed system tests on its ADAS acquisition system daily at UT 0001, 1200–1201 and 1630–1631. This contaminated the variometer data at these times, so they have been removed from processing.

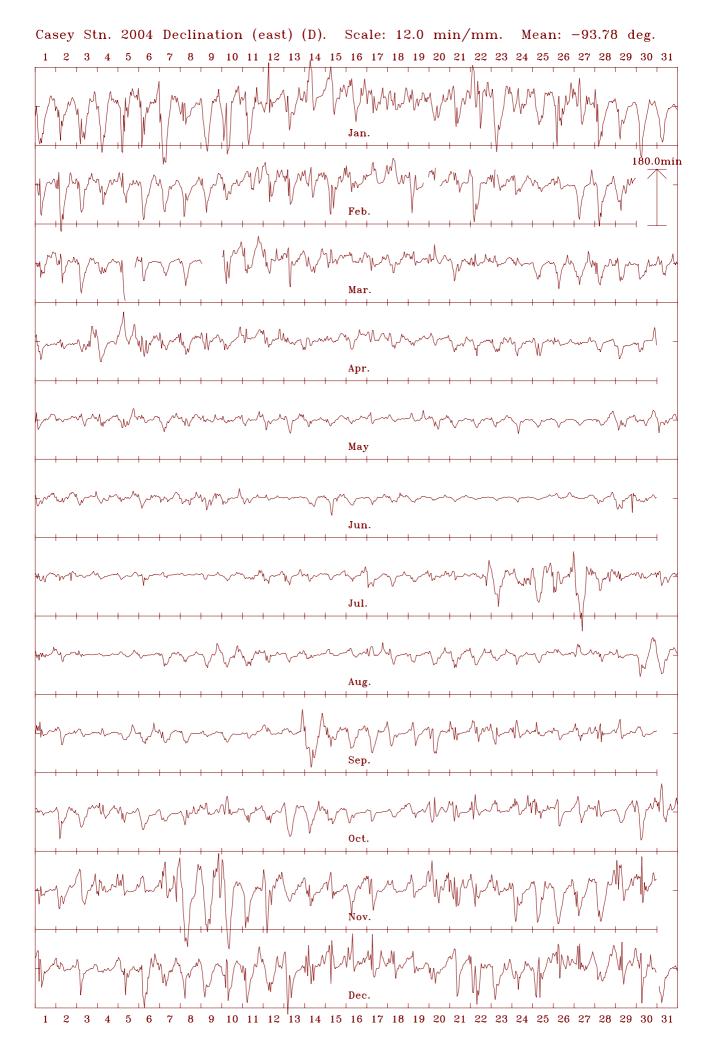
Monthly and Annual Mean Values

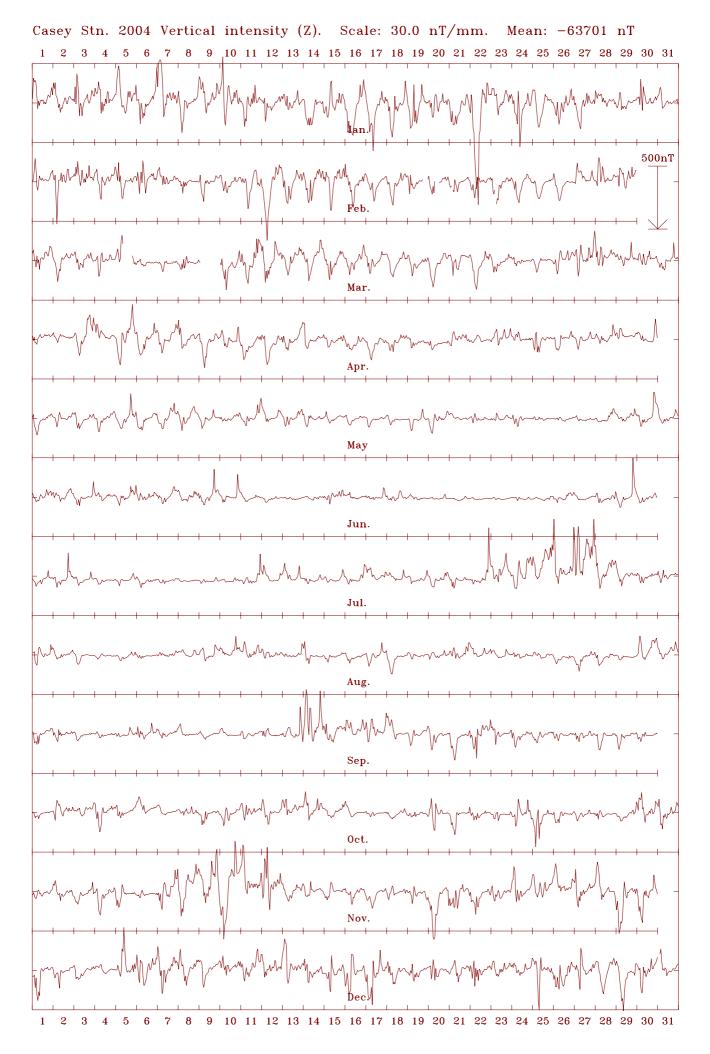
The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

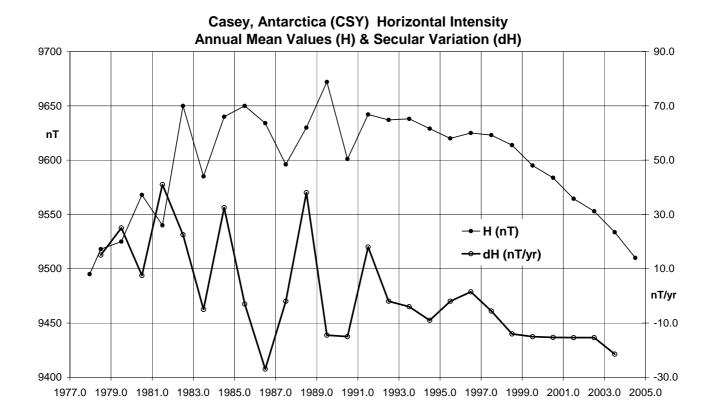
Casey Station	2004	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	1
January	All days	-608.0	-9497.8	-63713.1	64420.3	9518.4	-93° 39.8'	-81° 30.2'
	5xQ days	-601.9	-9489.9	-63700.2	64406.2	9509.8	-93° 37.9'	-81° 30.5'
	5xD days	-588.0	-9516.5	-63698.0	64408.2	9536.5	-93° 32.3'	-81° 29.1'
February	All days	-609.9	-9502.4	-63696.5	64404.4	9522.5	-93° 40.4'	-81° 29.8'
	5xQ days	-596.4	-9506.1	-63682.5	64390.9	9525.1	-93° 35.5'	-81° 29.6'
	5xD days	-587.7	-9508.0	-63690.5	64399.2	9526.8	-93° 32.3'	-81° 29.6'
March	All days	-621.7	-9492.9	-63702.1	64408.6	9513.5	-93° 44.8'	-81° 30.4'
	5xQ days	-638.7	-9484.3	-63686.8	64392.3	9505.9	-93° 51.2'	-81° 30.6'
	5xD days	-586.9	-9487.9	-63691.8	64397.4	9506.5	-93° 32.4'	-81° 30.7'
April	All days	-627.7	-9494.4	-63701.5	64408.2	9515.2	-93° 47.0'	-81° 30.3'
	5xQ days	-648.4	-9497.6	-63708.4	64415.8	9519.8	-93° 54.3'	-81° 30.1'
	5xD days	-616.4	-9494.1	-63712.5	64419.1	9514.3	-93° 42.9'	-81° 30.4'
May	All days	-631.6	-9488.7	-63698.6	64404.6	9509.7	-93° 48.5'	-81° 30.5'
	5xQ days	-630.1	-9488.2	-63690.4	64396.3	9509.1	-93° 48.0'	-81° 30.5'
	5xD days	-636.3	-9485.1	-63703.0	64408.4	9506.5	-93° 50.3'	-81° 30.7'
June	All days	-636.0	-9484.8	-63697.4	64402.9	9506.1	-93° 50.2'	-81° 30.7'
	5xQ days	-630.1	-9482.5	-63688.1	64393.3	9503.5	-93° 48.1'	-81° 30.8'
	5xD days	-644.4	-9482.0	-63705.7	64410.8	9504.0	-93° 53.3'	-81° 30.9'
July	All days	-645.5	-9490.9	-63720.1	64426.3	9513.0	-93° 53.5'	-81° 30.5'
	5xQ days	-632.7	-9488.9	-63682.4	64388.6	9510.0	-93° 48.9'	-81° 30.4'
	5xD days	-682.0	-9481.4	-63809.0	64513.4	9506.6	-94° 07.0'	-81° 31.6'
August	All days	-640.9	-9486.8	-63708.7	64414.3	9508.5	-93° 51.9'	-81° 30.7'
	5xQ days	-642.0	-9483.9	-63704.9	64410.2	9505.6	-93° 52.4'	-81° 30.8'
	5xD days	-653.5	-9484.8	-63734.7	64440.0	9507.5	-93° 56.5'	-81° 30.9'
September	All days	-634.4	-9487.5	-63705.2	64410.9	9508.9	-93° 49.5'	-81° 30.6'
	5xQ days	-633.4	-9488.1	-63699.9	64405.8	9509.3	-93° 49.2'	-81° 30.6'
	5xD days	-650.6	-9486.6	-63741.9	64447.4	9509.3	-93° 55.4'	-81° 30.9'
October	All days	-632.4	-9489.6	-63692.1	64398.3	9510.9	-93° 48.8'	-81° 30.4'
	5xQ days	-632.6	-9490.3	-63682.3	64388.7	9511.5	-93° 48.9'	-81° 30.3'
	5xD days	-634.1	-9488.1	-63714.0	64419.9	9509.8	-93° 49.5'	-81° 30.7'
November	All days	-624.4	-9493.4	-63697.9	64404.7	9514.7	-93° 45.8'	-81° 30.3'
	5xQ days	-609.2	-9487.5	-63685.7	64391.5	9507.2	-93° 40.5'	-81° 30.6'
	5xD days	-642.7	-9497.7	-63746.8	64454.4	9521.5	-93° 52.4'	-81° 30.3'
December	All days	-618.5	-9484.4	-63683.4	64388.9	9505.1	-93° 44.0'	-81° 30.7'
	5xQ days	-618.2	-9482.4	-63679.2	64384.4	9502.7	-93° 43.9'	-81° 30.7'
	5xD days	-633.3	-9479.1	-63680.6	64385.5	9501.0	-93° 49.4'	-81° 30.9'
Annual	All days	-627.6	-9491.1	-63701.4	64407.7	9512.2	-93° 47.0'	-81° 30.4'
Mean	5xQ days	-626.2	-9491.1 -9489.1	-63690.9	64397.0	9510.0	-93° 46.5'	-81° 30.4'
Values	5xQ days 5xD days	-629.7	-9469.1 -9490.9	-63719.0	64425.3	9510.0	-93° 47.8'	-81° 30.5'
value3	UND days	-023.1	U- 1 UU.U	007 19.0	U-TZU.U	0012.0	JU 41.0	01 00.0

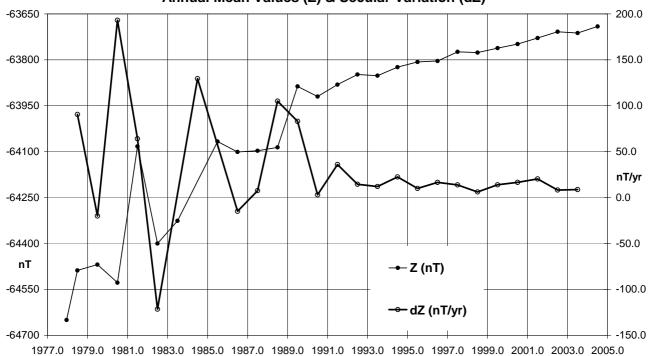

(Calculated: 13:55 hrs., Mon., 20 Feb., 2006)

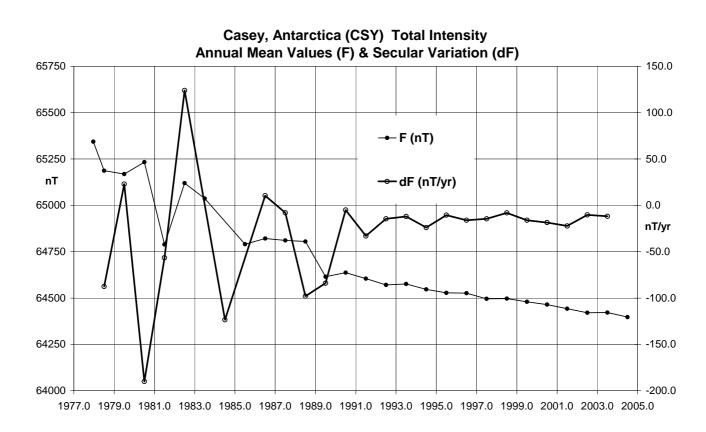

Hourly Mean Values


The charts on the following pages are plots of hourly mean values.


The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense.


The mean value given at the top of each plot is the *all-days* annual mean value of the element.





Casey, Antarctica (CSY) Vertical Intensity Annual Mean Values (Z) & Secular Variation (dZ)

Significant Events in 2004 (CSY)

- 11 Feb The acquisition computer required maintenance due to the detection of a computer virus. Some data loss from 11th to 24th (system calibrations). Several reboots and data loss.
- 05 Mar 0800–2000: Contamination to data with a period of about 25 minutes. The station manager advised that the heating in the building that houses the variometer electronics was turned down at 0610UT. A large drift was recorded in the variometer during this period. These data were not included in final processing.
- 09 Mar 0100–2340: Contamination to data with a period of about 25 minutes. These data were not included in final processing.
- 04 May 0022: The station manager advised that the temperature in the building that houses the variometer electronics was increased to its normal value of approximately 20°C.
- 06 May Steep drift in variometer data appears to have ceased.
- 10 May ~0830: The station manager advised that the temperature in the building that houses the variometer electronics was again reduced, this time for the remainder of the winter.
- 31 Dec Data missing due to a problem with AAD's GPS system.

Data losses in 2004

Short intervals of data were contaminated by daily calibration pulses automatically scheduled by AAD to occur at 0001, 1200–1201 and 1630–1631 on all days in 2004. These 5 minutes of data each day were removed from the GA data set.

There was no PPM recording variations in total intensity at Casey during 2004. The periods of data loss that follow refer to EDA fluxgate variometer data.

- Jan 22 0431–0440 (10 min) All channels: System upgrades.
- Feb 11 0935–1026 (52 min) All channels.
- Feb 12 0640–0656 (17 min) All channels: System upgrades.
- Feb 13 0155–0242 (48m); 0436–0438 (3m); 0440–0443 (4m): All channels: System upgrades.
- Feb 18 0049–0053 (5 min) All channels: System upgrades.
- Feb 19 0021–0023 (3m); 0031–0034 (4m); 0122–0125 (4m); 1016–1020 (5m); 1751–2315 (5h 25m) All channels: System upgrades.
- Feb 20 0620–0625 (6m); 0749–0754 (6m); 0801–1153 (3h 53m) All channels: System upgrades.

Data losses (cont.)

- Feb 21 0257–0304 (8m); 0308–0308 (1m); 0313–0409 (57m); 0737–0800 (24m)
 All channels: system upgrades.
- Feb 23 0258–0347 (50m); 0457–0611 (1h 15m); 0657–0705 (9m); 0724–0730 (7m); 0758–0758 (1m) All channels: System upgrades.
- Feb 24 0401–0435 (35m); 0514–0516 (3m); 0519–0521 (3m); 0524–0536 (13m); 0651–0657 (7m); 0701 (1m); 0718–0731 (14m); 2249–2250 (2m) All channels: System upgrades.
- Mar 05 0821–1917 (10h 56m) All channels: Data contamination.
- Mar 09 0124–2359 (22h 36m) All channels: Data contamination.
- Apr 13 0039–0041 (3 min) All channels: System failure.
- Apr 15 0244–0247 (4 min) All channels: System failure.
- Jul 16 0022–0023 (2m); 0728–0729 (2m) All channels: System reboot.
- Aug. 16 0728-0729 (2 min) All channels.
- Oct 14 0504–0506 (3m); 0749–0750 (2m); 2256–2259 (4m) All channels: System reboot.
- Oct 15 0014–0015 (2 min) All channels: System reboot.
- Dec 31 0002–0209 (2h 08m) All channels: System reboot.

Distribution of CSY data

Preliminary Monthly Means for Project Ørsted

• Sent monthly by email to IPGP throughout 2004.

1-minute and Hourly Mean Values to WDCs

- 2003: WDC-A, Boulder, USA (sent 02 Sep. 2004)
- 2004: WDC-C1, Copenhagen, Denmark (sent 2 Jan 2006)
- 2004: WDC-A, Boulder, USA (sent 10 Jan. 2006)

1-minute Values for Project INTERMAGNET

• 2004: to Paris GIN (sent 22 Dec. 2005)

Enquiries for variation data from Casey for 1997 or earlier should be directed to the Atmospheric and Space Physics Section of the Australian Antarctic Division, Channel Highway, Kingston, Tasmania.

Notes and Errata (including Davis Station) (cumulative since AGR'93)

There was an inconsistency in the Davis magnetic H component monthly means in the *AGR1996*. Corrected values were given in the *AGR1997*.

The magnetic observatory is part of Mawson scientific research station, built on the edge of Horseshoe Harbour, MacRobertson Land , in Antarctica. It is built on bare charnockite basement rock: there is no ice or soil cover.

The magnetic observatory buildings, comprising the VARIOMETER HOUSE and the ABSOLUTE HOUSE, are situated on the south-east and inland side of the Mawson base, at the end of East Bay. They are in a magnetic quiet zone at an extremity of the Mason base.

In 1955 the Mawson observatory commenced recording magnetic variations with a three-component analogue magnetograph. The observatory has continuously recorded the geomagnetic field (and seismic activity) at Mawson since that time. In December 1985 the magnetic observatory was converted to digital recording. It is operated by Geoscience Australia as part of the Australian National Antarctic Research Expeditions (ANARE).

Further details of the observatory's history are in the AGR 1994.

Key data for Mawson Observatory:

3-character IAGA code: MAW Commenced operation: 1955

Geographic latitude: 67° 36′ 14″ S
 Geographic longitude: 62° 52′ 45″ E
 Geomagnetic[†]: Lat. -73.08°; Long. 110.34°

Lower limit for K index of 9: 1500 nT
 Principal pier identification: Pier A

• Elevation of top of Pier A: 12 metres AMSL

• Azimuth of principal reference

(Mark BMR89/1 from Pier A): 350° 36.9' Distance to Mark BMR89/1: 112 metres

Observers in Charge: R. Hegarty (2004, GA/BoM)

G. Roser (2005, GA/AAD)

• Observers in Charge:

† Based on the IGRF 2000.0 model updated to 2004.5

Variometers

A 3-axis Narod ringcore fluxgate (RCF) magnetometer and an Elsec 820M3 PPM continuously monitored variations in the Earth's magnetic field at Mawson throughout 2004. The RCF sensor was located within the sensor room of the MAW VARIOMETER HOUSE and the PPM sensor was in the recording room of the same building. This building also housed a global positioning system (GPS) clock, a data acquisition PC, a network PC, an Aironet ethernet radio link and a standby power supply.

Two of the orthogonal RCF magnetometer sensors were horizontal and oriented so that they were each at an angle of 45 degrees to the direction of the horizontal component of the magnetic field (ie 45° to the magnetic declination, D). The third sensor was aligned vertically, ie. parallel with the geomagnetic element Z.

The RCF produced 8 samples per second that were averaged and output as 1-second data. The PPM variometer produced 10-second samples.

The temperatures of the sensors and the electronics of the RCF system were monitored by its in-built dual temperature system. Temperature within the sensor room was kept close to 10°C by a fast-cycle heater and displayed by a Doric Trendicator digital thermometer with its sensor on a disused (PEM/Y) pier. The recorded variometer head and electronics temperatures were about $6.5\pm1.0^{\circ}\text{C}$ (with a total range from 4.5°C to 10°C) throughout the year.

An old EDA 3-component fluxgate magnetometer and its associated data acquisition PC were available as a standby variometer to replace the principal system should it have become unserviceable. This system, also in the VARIOMETER HOUSE, was

tested during a service visit by a Geomagnetism project officer (PGC) in January 2003, but was left powered off during 2004.

The F variometer performed very poorly throughout 2004. From late July it also began to auto-trigger rather than trigger on command from the acquisition computer, causing data sequence errors. This appeared as duplicate minute-records containing a single F value and did not harm the recorded or processed 1-minute vector data, but it was a hindrance to the detection of missing data.

Absolute Instruments and Corrections

The principal absolute magnetometers used to calibrate the recording variometers at Mawson in 2004 were Danish fluxgate magnetometer no. D26035 mounted on a Zeiss 020B theodolite no. 311542 and Elsec model 770 PPM no. 210 until the end of March, then GEM model GSM90 no. 3091315 from April 2004 onwards.

Danish fluxgate magnetometer no. DI0022 mounted on a Zeiss 020B theodolite no. 353758 was used monthly as a secondary instrument from February 2004 onwards.

Elsec model 770 PPM no. 199 was used as a secondary instrument until the end of March 2004, and Elsec model 770 PPM no. 210 was used as a secondary instrument from April onwards.

All absolute observations were performed on Pier A while the azimuth mark BMR89/1 was used as the declination reference.

Instrument comparisons performed at Mawson throughout 2004 indicated relative corrections to the absolute magnetometers in use at there were:

```
F (E770_210) = F (E770_199) + 1.7 \pm 0.5 nT
F (GSM90_3091315) = F (E770_210) - 0.4 \pm 0.4 nT
D (D26035/311542) = D (DI0022/353758) + 0.04' \pm 0.17'
I (D26035/311542) = I (DI0022/353758) + 0.07' \pm 0.04'
```

Instrument comparisons performed at Canberra Observatory on 01-02 December 2003 indicated that the corrections to the Mawson instruments, required to align them to Australian Magnetic Reference held at the Canberra Observatory, were:

```
F (GSM90_3091315) = F (CNB) + 0.0 nT
D (DI0022/353758) = D (CNB) - 0.07'
I (DI0022/353758) = I (CNB) - 0.07'
```

The adopted instrument corrections for PPM GSM90_3091315 and to DIM D26035/311542 are respectively:

```
\Delta F = 0.0 \ nT \qquad \Delta D = 0.0' \qquad \Delta I = 0.0
```

Mawson data in this report have been adjusted to the absolute instruments GSM90_3091315 and D26035/311542 using these "zero" adopted corrections, and as a consequence no corrections have been applied to the Mawson data in this report.

According to these measurements, after the adoption of E770_210 as the standard total intensity instrument, 2003 data should have been corrected by:

```
\Delta X = -0.1 \text{ nT} \Delta Y = +0.1 \text{ nT} \Delta Z = +0.4 \text{ nT},
```

although ${\bf no}$ corrections were applied to those data as the above small values exceeded the standard deviations of their estimates. This resulted in a small step in the data across the 2003/2004 boundary.

Until the end of January 2004 classical magnetometers were routinely used to maintain calibration in case of failure of the primary instruments. They included an Askania declinometer (serial 630332), three horizontal magnetometers (QHM serial 300, 301, and 302) and Askania circle 611665. With the availability of DIM and PPM backup instruments, the classical instruments were placed out of service at the end of January 2004. No data analysis of those instruments for their brief service in 2004 is included in this report.

Baselines

The standard deviations between the adopted variometer model and data, and the absolute observations, were:

$$\sigma_X = 0.8 nT \hspace{0.5cm} \sigma_Y = 1.2 nT \hspace{0.5cm} \sigma_Z = 0.8 nT. \label{eq:sigma_X}$$

(In terms of the absolute observed components, they were:

$$\sigma_F = 0.6 nT$$
 $\sigma_D = 10$ " $\sigma_I = 6$ ")

Operations

The personnel who operated the Mawson observatory in 2004 were: the 2004 observer (RH) employed jointly by Geoscience Australia (GA) and the Bureau of Meteorology (BoM) who performed absolute observations from 19 November 2003; and the 2005 observer (GR) whose position with the Australian Antarctic Division (AAD) was partially funded by GA who performed absolute observations from 7 December 2004. They were members of the Australian National Antarctic Research Expedition (ANARE). The Mawson Station personnel changeover each summer, with varying amounts of overlap.

The observers were responsible for the continuous operation of the observatory and performed equipment maintenance as required. In 2004 the observers performed absolute observations once each week and forwarded them by e-mail to GA where all data processing was performed. During the observations the variometer system was also checked.

The 1-second RCF data and the 10-second PPM data as well as 1-minute means of both were recorded on an acquisition PC in the recorder room. The computer was connected to a pulse-per-second input from a GPS clock to keep the clock rate accurate. A PC running QNX, also in the VARIOMETER HOUSE, that was connected to the station's radio network-hub, automatically copied files from the acquisition PC each day.

The files on this PC were subsequently automatically retrieved at GA, Canberra, from a secure network by ftp via the ANARE satellite communications system. To ensure correct operation and to check system timing, the data acquisition system was routinely interrogated using a PC in the Science Building.

The recorder room also housed an uninterruptible power supply for power back-up.

In earlier years (particularly 2000) considerable effort was made to isolate the variometer system from static electricity sparks originating from the very dry blown snow during the severe blizzards that are common at Mawson. The sparks occasionally halted the acquisition computer. This seems to have improved the situation, but there are still unacceptable data losses during blizzards which also delay attention from the local observer for a few days. Blizzard was the major cause of data loss during 2004,

either corrupting data or the computer clock, or halting the computer outright, and accounting for almost all of the 1.2% data loss for the year.

Operations (cont.)

The daily data were processed at GA then distributed, usually within a few hours after UT0. Daily data plots were examined at GA for possible problems, which were usually quickly rectified by the local observer. The final data for the year were reduced and analysed by GA staff.

On 1 November 2004, external mark LEE (1,561m from Pier A) was occupied for magnetic observations for the first time. The magnetic parts of the mark were temporarily removed during the observations. The observations were at 1.6m agl (above ground level – not above mark level). Two observations were made at LEE and compared to baselines on Pier A at a different time of the same day. There were inconsistencies between the declination results at LEE, but the second of the two observations seemed to be more internally consistent – both results summarised below:

$$1^{st}$$
 set: D at Pier A = D at LEE - 1.1'

I at Pier A = I at LEE + 1.6'

F at Pier A = F at LEE - 1.4 nT

 2^{nd} set D at Pier A = D at LEE + 4.7'

I at Pier A = I at LEE + 1.6'

F at Pier A = F at LEE - 1.4 nT

The external mark BMR89/2 could not be occupied during the latter stages of the 2004 observer's (RH's) term as it remained buried under snow until he departed Mawson.

On 8 March 2004, a round of angles using BMR89/1 (Ref. azimuth 350° 36.9' at Pier A) and marks A, BMR89/2, BMR85/2, and SOH gave unexpected results for A and BMR85/2. The round of angles was repeated on 26 April 2004, including the same marks and also LEE. These results were within 0.1' of the expected results, with the exception of BMR85/2 which was 0.2' lower than expected.

The conclusion was that the marks and Pier A were stable.

Data losses in 2004

Mar 08 0745-0748 (4 min) All channels: Unknown cause.

May 04 2244-to 06 / 0504 (1d 6h 21m) All channels: Blizzard.

Jun 09 1600–2047 (4h 48m) All channels: Most likely caused by blizzard.

Jul 24 2333 to 26 / 0747 (1d 08h 15m) All channels: Blizzard.

Aug 25 1338–1339 (2 min) All channels: Most likely caused by blizzard.

Aug 25 1410 to 27 / 0214 (1d 12h 05m) All channels: Blizzard.

The F variometer data from about half of all days during the year was not usable and so withheld from processing.

Mawson Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month as indicated. Plots of these data with secular variation in H, D, Z & F are on pages 104 & 105.

Year	Days		D		I	Н	X	Υ	Z	F	Elts*
		(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
1955.5		-58	38.1	-69	33.3	18272	9854	-15387	-49012	52307	DHZ
1956.5		-58	53.2	-69	32.5	18282	9927	-15352	-49006	52305	DHZ
1957.5		-59	08.7	-69	31.1	18292	9461	-15655	-48974	52279	DHZ
1958.5		-59	25.6	-69	30.3	18293	9538	-15610	-48940	52247	DHZ
1959.5		-59	42.6	-69	28.5	18293	9615	-15562	-48860	52172	DHZ
1960.5		-59	59.6	-69	25.2	18323	9708	-15540	-48800	52127	DHZ
1961.5		-60	14.6	-69	23.1	18322	9228	-15828	-48707	52039	DHZ
1962.5		-60	30.1	-69	21.1	18333	9305	-15796	-48650	51990	DHZ
1963.5		-60	45.2	-69	17.6	18356	9386	-15775	-48562	51915	DHZ
1964.5		-60	59.2	-69	15.4	18353	9449	-15734	-48460	51819	DHZ

continued next page ...

Year	Days	(Deg	D Min)	(Deg	l Min)	H (nT)	X (nT)	Y (nT)	Z (nT)	F (nT)	Elts*
1965.5		-61	12.6	-69	13.1	18356	8958	-16022	-48368	51734	DHZ
1966.5		-61	24.0	-69	09.6	18362	9014	-15997	-48235	51612	DHZ
1967.5		-61	34.4	-69	07.2	18374	9068	-15980	-48168	51553	DHZ
1968.5		-61	43.8	-69	05.2	18365	9107	-15948	-48060	51449	DHZ
1969.5		-61	53.0	-69	03.4	18353	9144	-15913	-47954	51346	DHZ
1970.5		-62	00.5	-69	00.4	18358	8621	-16208	-47840	51241	DHZ
1971.5		-62	05.3	-68	56.4	18375	8652	-16211	-47719	51135	DHZ
1972.5		-62	11.4	-68	53.1	18381	8683	-16201	-47600	51026	DHZ
1973.5		-62	17.6	-68	49.7	18391	8717	-16194	-47486	50923	DHZ
1974.5		-62	24.8	-68	47.2	18390	8750	-16175	-47380	50824	DHZ
1975.5		-62	31.4	-68	44.0	18397	8785	-16164	-47269	50723	DHZ
1976.5		-62	37.3	-68	40.0	18418	8823	-16167	-47157	50626	DHZ
1977.5		-62	43.9	-68	36.9	18425	8857	-16157	-47051	50530	DHZ
1978.5		-62	51.9	-68	35.5	18421	8893	-16132	-46986	50468	DHZ
1979.5		-62	57.9	-68	32.9	18425	8923	-16120	-46890	50380	DHZ
1980.5		-63	05.8	-68	29.8	18432	8396	-16409	-46784	50284	DHZ
1981.5		-63	14.6	-68	27.1	18443	8443	-16397	-46705	50215	DHZ
1982.5		-63	21.2	-68	25.5	18433	8470	-16372	-46616	50128	DHZ
1983.5		-63	26.6	-68	22.3	18439	8498	-16364	-46503 46404	50025 49936	DHZ DHZ
1984.5 1985.5		-63	33.1 40.2	-68 -68	19.3 17.0	18446 18457	8532 8571	-16354 -16346	-46404 -46342	49936 49882	DHZ DHZ
1985.5		-63 -63	40.2 48.7	-68	15.1	18460	8613	-16346 -16328	-46342 -46276	49822	XYZ
1980.5		-63	56.6	-68	12.5	18470	8655	-16326	-46276 -46198	49022	XYZ
1988.5		-64	04.4	-68	10.7	18475	8120	-16595	-46142	49703	XYZ
1989.5		-64	12.8	-68	09.7	18474	8160	-16574	-46099	49663	XYZ
1990.5		-64	21.1	-68	06.4	18492	8208	-16570	-46015	49592	XYZ
1991.5		-64	28.8	-68	04.2	18502	8250	-16561	-45957	49542	XYZ
1992.5	Q	-64	36.5	-68	01.7	18513	7938	-16724	-45885	49479	XYZ
1993.5	Q	-64	43.6	-67	59.4	18522	7908	-16749	-45819	49422	ABC
1994.5	Q	-64	51.8	-67	57.4	18537	7874	-16781	-45779	49389	ABC
1995.5	Q	-65	00.4	-67	55.3	18550	7838	-16813	-45731	49350	ABC
1996.5	Q	-65	09.2	-67	53.5	18561	7799	-16843	-45692	49318	ABC
1997.5	Q	-65	18.9	-67	52.0	18572	7757	-16875	-45663	49295	ABC
1998.5	Q	-65	28.6	-67	51.3	18575	7710	-16900	-45642	49277	ABC
1999.5	Q	-65	38.5	-67	50.2	18579	7663	-16925	-45611	49250	ABC
2000.5	Q	-65	48.0	-67	49.6	18579	7616	-16946	-45585	49225	ABC
2001.5	Q	-65	56.3	-67	48.9	18577	7574	-16963	-45555	49198	ABC
2002.5	Q	-66	05.2	-67	48.2	18581	7532	-16986	-45540	49185	ABC
2003.5	Q	-66	14.7	-67	48.7	18570	7481	-16997	-45532	49174	ABC
2004.5	Q	-66	23.5	-67	48.1	18568	7436	-17014	-45503	49146	ABC
1992.5	Α	-64	36.9	-68	02.8	18499	7930	-16712	-45894	49482	XYZ
1993.5	Α	-64	44.2	-68	00.7	18506	7898	-16736	-45830	49426	ABC
1994.5	Α	-64	52.9	-67	59.4	18511	7858	-16760	-45794	49394	ABC
1995.5	Α	-65	00.9	-67	56.7	18532	7828	-16798	-45741	49352	ABC
1996.5	A	-65	09.8	-67	54.5	18548	7791	-16833	-45698	49319	ABC
1997.5	A	-65	19.4	-67	53.0	18560	7749	-16865	-45670 45640	49297	ABC
1998.5 1999.5	A	-65	29.1	-67	52.4	18561	7702	-16887	-45648 45648	49278	ABC
	A	-65	39.0 48.2	-67	51.5	18561 18566	7653 7610	-16910 16035	-45618 45504	49250 49230	ABC ABC
2000.5 2001.5	A A	-65 -65	46.2 56.2	-67 -67	50.6 49.8	18566 18567	7571	-16935 -16953	-45594 -45565	49230	ABC
2001.5	A	-66	05.8	-67	49.3	18568	757 I 7524	-16955	-45546	49203	ABC
2002.5	A	-66	15.6	-67	50.7	18546	7466	-16976	-45546	49177	ABC
2004.5	A	-66	24.1	-67	49.6	18549	7426	-16998	-45514	49149	ABC
1992.5 1993.5	D D	-64 -64	39.6 45.9	-68 -68	05.2 03.0	18466 18476	7904 7877	-16689 -16713	-45907 -45847	49482 49430	XYZ ABC
1993.5	D	-64	45.9 55.3	-68	03.0	18476	7877 7831	-16713 -16734	-4584 <i>1</i> -45804	49430 49390	ABC
1994.5	D	-65	01.7	-67	58.8	18504	7812	-16734 -16774	-45004 -45752	49353	ABC
1995.5	D	-65	11.1	-67	56.2	18525	7775	-16774	-45752 -45707	49333	ABC
1990.5	D	-65	20.4	-67	55.0	18534	7733	-16844	-45707 -45682	49299	ABC
1998.5	D	-65	30.9	-67	54.8	18530	7680	-16864	-45665	49282	ABC
1999.5	D	-65	41.0	-67	53.9	18528	7630	-16884	-45626	49245	ABC
2000.5	D	-65	49.7	-67	52.6	18543	7593	-16917	-45614	49239	ABC
2001.5	D	-65	56.4	-67	51.6	18547	7561	-16935	-45583	49212	ABC
2002.5	D	-66	07.6	-67	51.2	18540	7504	-16953	-45552	49180	ABC
2003.5	D	-66	17.4	-67	53.3	18510	7443	-16947	-45556	49173	ABC
2004.5	D	-66	26.0	-67	52.1	18517	7404	-16972	-45530	49152	ABC

^{*} Elements ABC indicates non-aligned variometer orientation

Distribution of MAW data

Preliminary Monthly Means for Project Ørsted

• Sent monthly by e-mail to IPGP

1-minute and Hourly Mean Values to WDCs

- 2003 data: WDC-A, Boulder, USA (sent 19 Apr. 2004)
- 2004 data: WDC-A, Boulder, USA (sent 10 Jan. 2006)

1-minute Values for Project INTERMAGNET

• 2003 data: WDC-C1, Copenhagen, Den. (sent 19 Apr. 2004)

Significant Events in 2004

- Nov 19 The 2003 observer (KS) handed over responsibility for 2003 absolute observations and the observatory to the 2004 observer (RH).
- Jan 26 to Jan 31: Mawson station resupply going on.
- Feb 02 PPM variometer sensor no.28079910 installed, which performed poorly.
- Feb 10 Installed *spare* PPM sensor in variometer (may have been E820_158 incorrectly recorded as E820_159)
- Feb 11 New GSM90 installed in the Absolute House.
- Feb 19 Heater removed from ABSOLUTE HOUSE for repair.
- Feb 25 New DIM installed in Absolute House.
- Feb 27 Repaired heater re-installed in ABSOLUTE HOUSE.
- March PDA software for running GSM90 installed and GSM90 phased in as primary absolute F reference.
- Mar 08 Round of angles from Pier A measured.
- Apr 05 Floppy-disc drive removed from VARIOMETER HOUSE.
- Apr 26 Another round of angles from Pier A measured.
- May 11 Blown light bulb removed from VARIOMETER HOUSE.
- May 18 New light bulb installed in Variometer House.
- May 31 0530–0550: Maintenance carpenter inspected VARIOMETER HOUSE.

Significant Events (cont.)

- Jun 11 Acquisition time adjusted by -1s following reboot.
- Jul 26 Acquisition time adjusted by -1s following reboot. Variometer PPM began to self-trigger.
- Aug 20 Connection re-seated after the acquisition PC keyboard had locked-up.
- Aug 23 0808: Acquisition time adjusted by +1s.
- Aug 27 Acquisition PC rebooted and time adjusted by -1s. Narod RCF magnetometer reset.
- Nov 01 LEE (Lee Island marker) absolute observations made for external remote reference.
- Dec 07 The 2004 observer (RH) handed over responsibility for absolute observations and the observatory to the 2005 observer (GR).

K indices

The table on the next page shows Mawson K indices for 2004. Using the digital data, these have been derived by a computer algorithm that calculates a simple range in the X and Y magnetic components over each 3-hour UT period. The K indices were calculated from the maximum of the X and Y ranges in the usual manner. This was suitable for Mawson as the diurnal variation is small.

Notes and Errata (cumulative since AGR'93)

In AGR1998 through to AGR2001 the principle azimuth mark at Mawson (MAW) was reported as being BMR89/2 at an azimuth of 19° 14.0' and distance of 105m from principle

observation Pier A. This mark ceased to be used after May 1998, from when mark BMR89/1 was principally used.

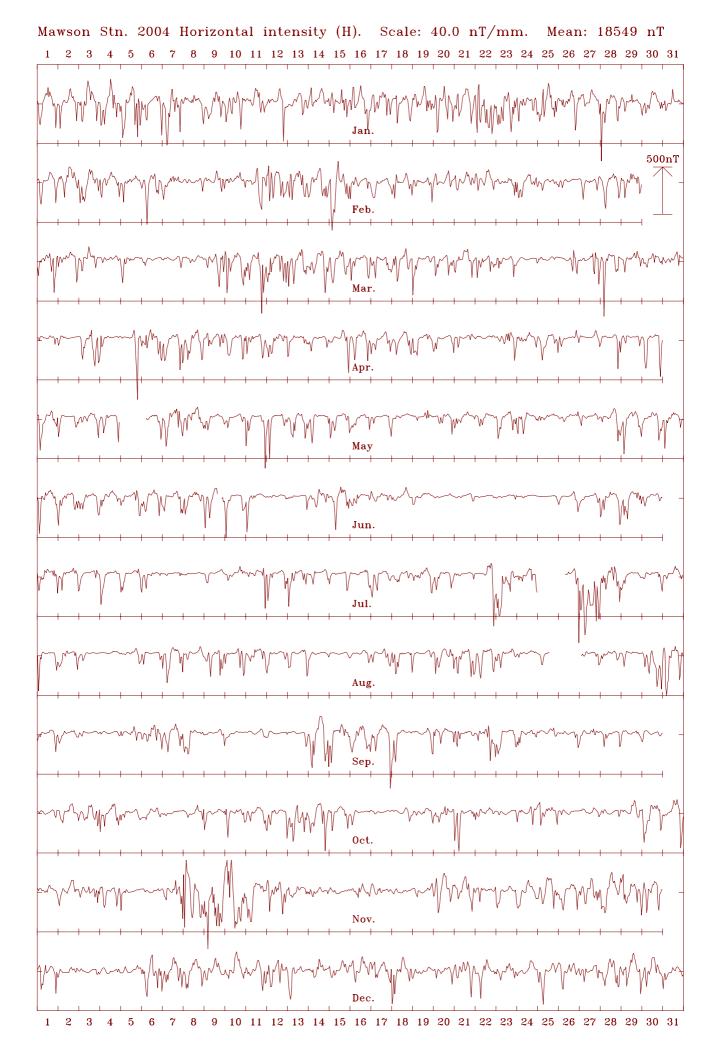
Date	January	Februa			March			April	_00	-	May		June	Date
01	5554 5456 39	4553 435			4 4776	~	3221	2142 17			3244		D 6644 3346 36	
02 03	6534 4456 37 4655 4464 38	4454 454 5565 454			4 3376 3 4 4351 2			0110 10 4656 37			0054 3255		6544 2355 34 4443 2226 27	
04 05	5554 6564 40 6644 4776 44	6344 434 5544 333			3 2333 2 3 2204 2			2312 22 3675 27			1166		5433 4244 29 4431 2446 28	
06	5563 3346 35	4664 366	3 38	Q 332	3 2113 3	18 D	5555	4266 38	3	44	3256		4553 4265 34	06
07 08	D 5776 6564 46 O 3333 4235 26	4443 323 0 3223 212			2 2245 2 2 2212 3			2275 34 3366 36			3476 3355		5432 3246 29 5433 4252 28	
09 10	4654 4564 38 5454 4773 39	2322 435 0 4333 332		D 243	3 4556 3 5 4267 4	32 D		2365 33 3276 32			1214 1155		D 6454 35 6431 2065 27	
11	3445 5645 36	D 3334 567			4 5676 4			2465 33			1157		6433 3112 23	
12 13	Q 3322 4475 30 4443 5545 34	D 6666 457 D 5654 476			5 3676 4 3 4465 3			3252 30 2254 26			1264 2365		1222 1003 11 3121 1105 14	
14 15	Q 5533 4444 32 5542 4765 38	5455 467 D 6666 355	5 41	555	4 3475 3 3 4565 3	38	4421	1125 20 3346 25)		2114 2135		3345 3343 28 D 2464 4366 35	14
16	D 5666 5566 45	5433 225			2 3366 3			3365 35			1125		5443 2114 24	
17 18	5555 3566 40 3463 4376 36	Q 4442 224 5532 245			2 2245 2 2 3465 3			2244 27 3346 31			1135 2112		4443 3254 29 3344 4332 26	
19 20	3544 4756 38	4432 125	6 27	643	2 2133 2	24	5542	2435 30)	2321	3533	22	4333 2221 20	19
21	4653 4465 37	Q 4431 235 5422 434			2 2655 3 3 3464 3	-		1125 21 1152 20			2235 2223		2 2221 2121 13 2222 2134 18	
22 23	D 7777 6675 52 D 6655 6675 46	5433 334 3433 324			3 3645 3 2 2275 3			1232 15 4447 33		3543	3212 2363	23 (Q 1220 0012 08 O 2111 1114 12	
24	6454 3356 36	5553 255	5 35	Q 331	1 1004 1	13	3343	3225 25	5	5455	4113	28	0121 1000 05	24
25 26	D 6665 5655 44 4544 4475 37	4442 223 0 4431 211			1 2231 1 2 3566 1			3255 31 1254 22			3222 2114		Q 1101 0013 07 3101 1345 18	
27 28	5543 4335 32 7664 3365 40	2633 224 3674 335	4 26	434	4 4536 3 4 3463 3	33	3211	0236 18 1276 25	Q Q	3321	2223 2365	18 (Q 3221 0134 16 D 5534 2136 29	27
29	Q 3533 4235 28	D 4654 434		354	4 3435 3	31 Q	3322	1136 21	. D	4643	3366	35 I	D 4655 3365 37	29
30 31	5545 4445 36 O 3435 3223 25				4 5234 2 2 3462 2		4552	2367 34			3265 3364		4543 3244 29	30 31
	K-sum 37.6		31.5		30			26.9		0331		.8	23.2	
Date	July	Augus	t	S	eptember	<u> </u>	00	ctober		No	vember		December	Date
01	5443 3266 33	7431 105			2 2266 2			1244 19			3214		4664 3245 34	
02 03	4532 2436 29 4332 2252 23	3433 114 Q 3321 000	0 09	Q 231	3 1144 2 1 1112 1	12	3434	3335 29 4456 33	3	4323	3332 2345	26	Q 4331 3333 23 Q 3222 2234 20	03
04 05	5532 2225 26 5422 2235 25	Q 0131 111 1222 234			1 1013 1 2 2442 2			3455 34 1234 22			2355 0112		2 3121 1022 12 3343 2233 23	
06	Q 5542 2114 24	4320 101			4 4545			2234 23	~		2022		D 4665 6465 42	
07 08	Q 1321 1033 14 Q 2200 0011 06	6654 335 Q 3421 123	4 20	556	3 4365 3 3 2234 3	30	2332	1111 13 3325 23	B D	9676	3566 6366	49	5554 4456 38 4564 3435 34	80
09 10	Q 4420 1122 16 3432 1334 23	3453 337 D 4322 375			1 2235 1 1 1100 1			1224 20 3135 27			5787 6766		4433 3334 27 4434 4434 30	
11	3313 2247 25	2444 326			0 1244 1			2256 30			2335		3442 4455 31	
12 13	6543 1136 29 6454 2365 35	5432 323 4532 133	6 27	210	0 0102 1 0 0055 1	13 D	5564	2115 26 4465 39)	4443	4665 3233	26	D 5653 4533 34 6643 3322 29	13
14 15	2443 1125 22 4222 1265 24	4333 110 2100 002			4 5566 4 2 4545 3			4565 39 2355 29			2223 2011		3344 4333 27 4442 3454 30	
16	2222 2246 22	2211 423			4 4566			1003 16			4444		3652 4345 32	
17 18	7562 2246 34 4343 1244 25	4311 265 4553 101	5 24		4 3337 3 3 3102 2		2021	0102 10 2254 18	Q Q	3221	2124 2211	14	D 4654 4556 39 6554 4255 36	18
19 20	3333 2336 26 4542 2155 28	4211 023 D 5443 344			1 1237 1 4 4314 2			3215 21 4425 28			2234 4354		Q 4332 1222 19 4422 3245 26	
21	Q 3320 0114 14	D 4653 237			3 2234 2			2244 32			4565		4434 3464 32	
22 23	2112 4377 27 D 6775 3644 42	5553 336 5542 223	3 26	555	3 4767 3 3 2235 3	30 Q		2343 24 1115 17		5422	2224 2235	25	D 4674 4325 35 4443 3344 29	
24 25	D 4564 4536 37 D	Q 3221 122 Q 1442 1			3 1234 2 2 3244 2			2553 28 3324 30			3334 4564		Q 3332 3233 22 5663 2344 33	
26	D34 3369			222	1 1135 1	17 Q	3321	2101 13	3	4553	3346	33	4543 3454 32	26
27 28	D 8787 6679 58 5553 4576 40	-231 213 4333 225	5 4 26		1 2432 2 2 2125 2			2224 16 1124 17			4654 4345		4552 2354 30 4544 4576 39	
29 30	5443 3143 27 3323 2245 24	3412 212 D 4455 376			2 1134 1 0 1043 1			3442 23 3436 35			3456 3374		5565 4445 38 D 4665 5545 40	
31	3322 3334 23	D 6664 347						3476 33					5433 2334 27	
Mean	K-sum 26.9		25.0		23	. 6		24.7	,		30	.6	30.4	ı
				Occurr	ence dis	tribut	ion of	K-indic	es					
	K-Ir	ndex:	0	1	2 3	4	5	6	7	8	9	-		
			0	0 7	7 37 30 53	65 61	72 48	49 28	18 5	0	0	0		
	Janu		0											
	Janu Febru Mar	lary rch	0 3	12	38 55	57	46	28	9	0	0	0		
	Janu Febru Mar Apr Ma	lary rch ril ay	3 3 2	12 27 32	56 50 46 64	33 38	45 36	20 16	6 4	0	0	0 10		
	Janu Febru Mar Apr Ma Jur Jul	nary cch cil ay ne Ly	3 3 2 16 8	12 27 32 38 23	56 50 46 64 43 47 54 50	33 38 52 41	45 36 24 28	20 16 18 20	6 4 0 10	0 0 0 2	0 0 0 2	0 10 2 10		
	Janu Febru Mar Apr Ma Jur	nary cch cil ay ne Ly ust	3 3 2 16	12 27 32 38 23 37	56 50 46 64 43 47	33 38 52	45 36 24	20 16 18	6 4 0	0 0 0	0 0	0 10 2		
	Janu Febru Mar Apr Ma Jur Jul Augu Septe Octo	lary rch ril ay ne Ly lest ember ober	3 2 16 8 15 16 6	12 27 32 38 23 37 38 28	56 50 46 64 43 47 54 50 39 53 52 40 62 57	33 38 52 41 40 45 46	45 36 24 28 25 31 35	20 16 18 20 19 14	6 4 0 10 8 4	0 0 0 2 0 0	0 0 0 2 0 0	0 10 2 10 12 0		
	Janu Febru Mar Apr Ma Jul Augu Septe	lary rch ril ay ne Ly ist ember ober	3 2 16 8 15	12 27 32 38 23 37 38 28 12	56 50 46 64 43 47 54 50 39 53 52 40	33 38 52 41 40 45	45 36 24 28 25 31	20 16 18 20 19 14	6 4 0 10 8 4	0 0 0 2 0	0 0 0 2 0	0 10 2 10 12 0		

Monthly and Annual Mean Values

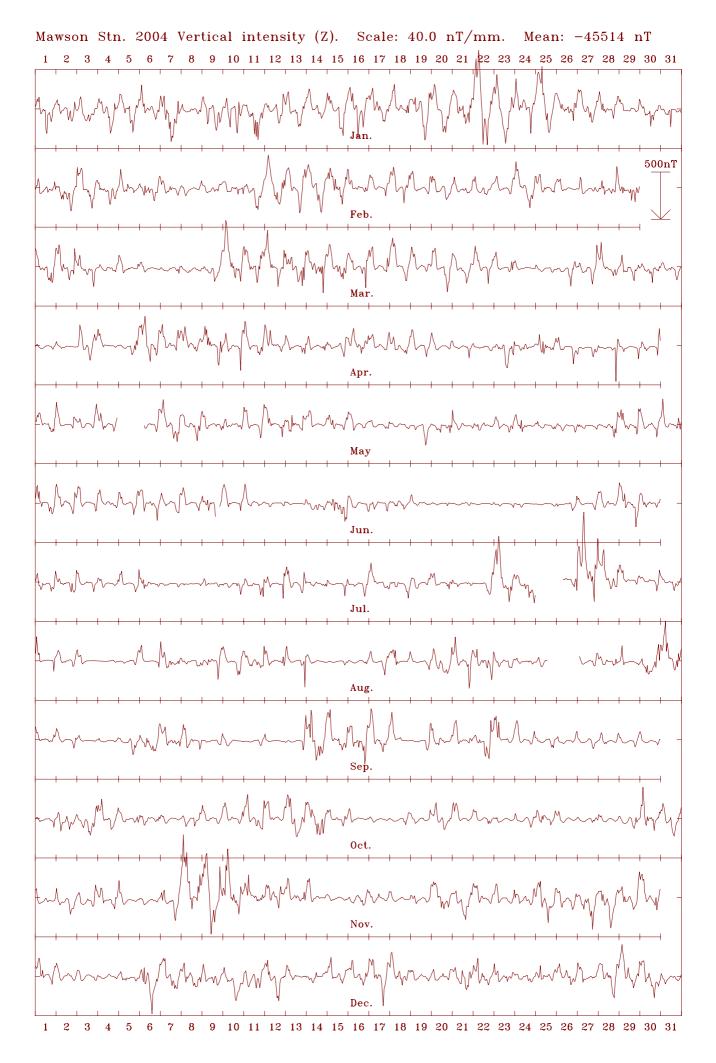
The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

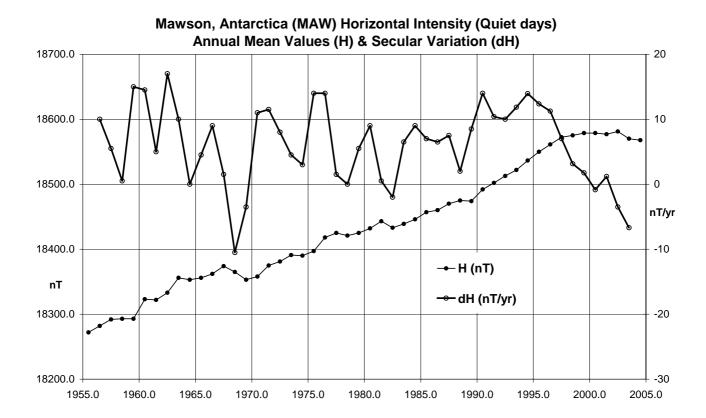
lawson Antarcti	ica 2004	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	I
January	All days	7463.3	-16994.3	-45516.3	49155.4	18561.1	-66° 17.5'	-67° 48.9'
	5xQ days	7477.6	-17016.5	-45514.1	49163.2	18587.0	-66° 16.7'	-67° 47.2'
	5xD days	7432.8	-16959.9	-45540.9	49162.0	18517.6	-66° 20.1'	-67° 52.3'
February	All days	7448.4	-16992.0	-45525.2	49160.6	18552.9	-66° 19.8'	-67° 49.7'
	5xQ days	7453.3	-17003.5	-45524.5	49164.6	18565.3	-66° 19.8'	-67° 48.8'
	5xD days	7442.0	-16976.7	-45529.7	49158.6	18536.4	-66° 19.8'	-67° 50.8'
March	All days	7432.2	-16986.6	-45528.6	49159.4	18541.4	-66° 22.2'	-67° 50.5'
	5xQ days	7446.4	-17009.9	-45505.5	49148.1	18568.4	-66° 21.5'	-67° 48.1'
	5xD days	7420.2	-16960.8	-45560.9	49178.8	18513.1	-66° 22.3'	-67° 53.2'
April	All days	7426.1	-16988.7	-45520.5	49151.6	18540.8	-66° 23.4'	-67° 50.3'
	5xQ days	7439.1	-17007.8	-45505.8	49146.6	18563.5	-66° 22.6'	-67° 48.5'
	5xD days	7426.8	-16975.7	-45525.5	49152.0	18529.3	-66° 22.3'	-67° 51.2'
May	All days	7424.8	-16992.9	-45509.5	49142.8	18544.2	-66° 23.9'	-67° 49.8'
•	5xQ days	7433.4	-17006.2	-45499.1	49139.0	18559.8	-66° 23.4'	-67° 48.5'
	5xD days	7416.1	-16985.4	-45512.6	49141.8	18534.0	-66° 24.8'	-67° 50.5'
June	All days	7426.1	-17001.9	-45497.0	49134.4	18553.0	-66° 24.3'	-67° 48.9'
	5xQ days	7437.0	-17014.5	-45489.2	49133.2	18568.9	-66° 23.4'	-67° 47.7'
	5xD days	7406.9	-16985.6	-45495.7	49124.8	18530.4	-66° 26.4'	-67° 50.3'
July	All days	7409.4	-16990.0	-45509.1	49139.1	18535.5	-66° 26.3'	-67° 50.4'
•	5xQ days	7431.1	-17012.5	-45489.8	49132.2	18564.6	-66° 24.3'	-67° 48.0'
	5xD days	7332.5	-16908.2	-45573.7	49159.8	18430.1	-66° 33.4'	-67° 58.9'
August	All days	7412.6	-16995.7	-45510.6	49142.8	18541.9	-66° 26.2'	-67° 50.0'
	5xQ days	7426.3	-17016.4	-45505.4	49147.2	18566.3	-66° 25.4'	-67° 48.3'
	5xD days	7391.8	-16962.8	-45513.2	49130.9	18503.5	-66° 27.3'	-67° 52.5'
September	All days	7412.2	-17001.4	-45514.2	49148.1	18547.0	-66° 26.7'	-67° 49.7'
	5xQ days	7424.0	-17015.7	-45502.6	49144.1	18564.8	-66° 25.7'	-67° 48.3'
	5xD days	7390.5	-16977.2	-45513.3	49135.9	18516.2	-66° 28.6'	-67° 51.7'
October	All days	7415.2	-17004.4	-45505.5	49141.5	18550.9	-66° 26.4'	-67° 49.3'
	5xQ days	7422.9	-17017.2	-45498.0	49140.1	18565.7	-66° 26.0'	-67° 48.1'
	5xD days	7393.5	-16978.7	-45514.7	49138.1	18518.8	-66° 28.2'	-67° 51.6'
November	All days	7412.3	-17007.8	-45529.2	49164.3	18553.0	-66° 27.1'	-67° 49.8'
	5xQ days	7421.4	-17019.3	-45503.4	49145.7	18567.1	-66° 26.4'	-67° 48.2'
	5xD days	7370.7	-16973.8	-45586.9	49200.3	18505.8	-66° 31.7'	-67° 54.3'
December	All days	7423.6	-17017.6	-45506.9	49148.8	18566.4	-66° 25.9'	-67° 48.3'
	5xQ days	7420.6	-17024.5	-45503.5	49147.4	18571.5	-66° 26.9'	-67° 47.9'
	5xD days	7418.1	-17016.2	-45494.4	49135.9	18563.1	-66° 26.8'	-67° 48.2'
Annual	All days	7425.5	16007.9	15E11 1	40140.1	18549.0	660 24 41	-67° 49.6'
Mean	All days 5xQ days		-16997.8 -17013.7	-45514.4 -45503.4	49149.1		-66° 24.1'	
Wean Values	5xQ days 5xD days	7436.1	-17013.7 -16971.8	-45503.4 -45530.1	49145.9	18567.7 18516.5	-66° 23.5' -66° 26.0'	-67° 48.1'
values	JAD days	7403.5	-108/1.0	-4 5550.1	49151.6	10010.0	-00 20.0	-67° 52.1'

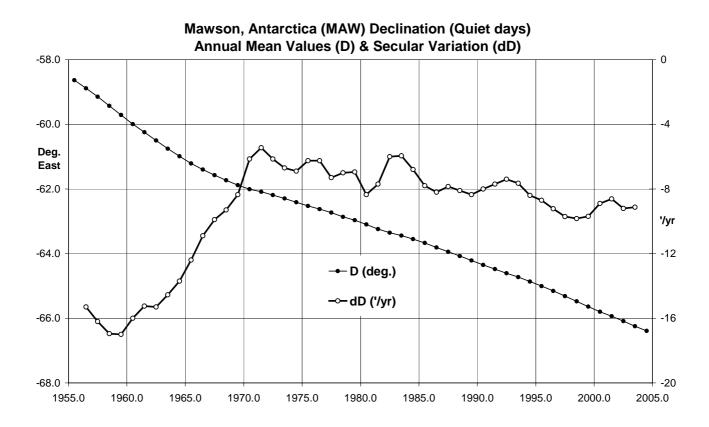

(Calculated: 15:51 hrs., Tue., 24 Jan., 2006)

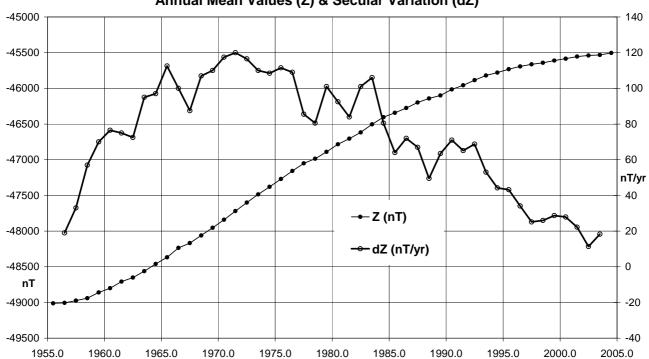
Hourly Mean Values

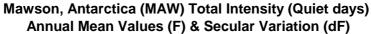

The charts on the following pages are plots of hourly mean values.

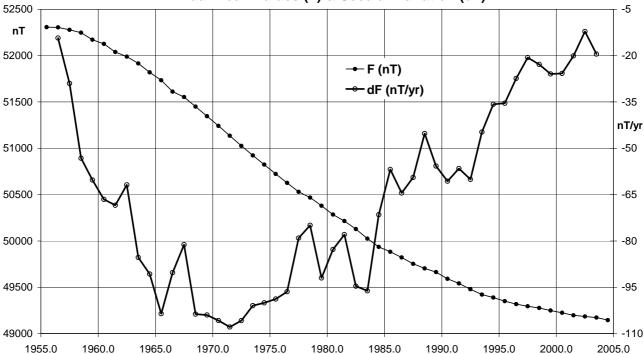
The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense.


The mean value given at the top of each plot is the *all-days* annual mean value of the element.









Mawson, Antarctica (MAW) Vertical Intensity (Quiet days) Annual Mean Values (Z) & Secular Variation (dZ)

Summary of data loss from the Australian observatories

The table below summarizes the 2004 monthly digital data acquisition losses, in minutes per month, at the Australian observatories. The first figure refers to the principal 3-component variometers and the second figure (in parentheses) to the recording total intensity instruments. A single figure indicates the same data loss in a month for both instruments. Annual totals and percentage losses are also shown.

For details of events that resulted in loss of data, including the contamination of data subsequently excluded from processing, see the sections entitled *Significant Events* and *Data Loss* contained in the respective observatory descriptions in this report.

2004	KDU	СТА	LRM	ASP	GNA	CNB	MCQ	CSY	MAW
Jan	0 (20)	0	1,077 (27,208)	0 (44,640)	186 (8,928)	0	0	166	0 (25 days)
Feb	0	0	0	0 (41,760)	0 (,1611)	0	4,553	1,170	0 (23 days)
Mar	0	0	3	1 (40,710)	12,788 (7,541)	914	0	155	4 (23 days)
Apr	0	0	0	0	7,598 (0)	14 (8)	0	157	0 (20 days)
May	0	0	180 (867)	0 (1,181)	0	0	0	155	1,821 (27 days)
Jun	0	0	6 (8)	0	0	0	121	150	288 (17 days)
Jul	0	0	11 (1,819)	0	0	0	440	157	1,935 (16 days)
Aug	0	0 (21,866)	0	0 (3)	0	0	14,641	157	2,167 (16 days)
Sep	0	8	3 (4,921)	0	1	0	0	150	0 (3 days)
Oct	0	0	0	58 (63)	2 (37)	0 (10)	407	166	0 (5 days)
Nov	24 (191)	0	11 (4,274)	0	0	0	0	150	0 (10 days)
Dec	0	1,269 (2,457)	3 (1,221)	0	0	0	2	283	0 (12 days)
3-axis variom.	24 (0.005%)	1,277 (0.24%)	1,294 (0.25%)	58 (0.011%)	20,575 (3.90%)	928 (0.18%)	20,164 (3.83%)	3,016 (0.57%)	6,215 (1.18%)
Total field	211 (0.04%)	24,331 (4.62%)	40,321 (7.65%)	128,357 (24.3%)	18,118 (3.44%)	932 (0.18%)	20,164 (3.83%)	no PPM	197 days (53.83%)

International Quiet and Disturbed Days

2004		Quieto	est day	ys 1 - 5	5	(Quiete	st day	s 6 - 1	0	M	ost Dis	sturbed	l days	1 - 5	
January	8A	29A	12A	31A	14A	21A	2A	15A	27A	11A	22	23	25	16	7	
February	26	17	8	20	10	25	16A	21A	9A	7A	12	29	13	15	11	
March	24	7	6	8	25	5	4	17K	19A	23A	10	11	12	9	2	
April	2	1	22	20	29	27	14	26	19	13	3	6	5	9*	23*	
May	26	18	17	27	16	25	9	14	10	2K	7*	29*	5*	20*	31*	
June	22	23	27	20	25	12	21	13	24	19	29	[*] 15*	1*	28*	9*	
July	8	7	9	21	6	29	4	10	18	3	27	25	23	26	24	
August	4	8	24	3	25	19	15	23	26	16	30	31	21*	10*	20*	
September	11	10	4	12	3	30	26	25	9	27	14	17	16*	22*	6*	
October	17	26	7	28	23	1	6	27	19	18	13	14	30*	31*	4*	
November	6	15	18	2	5K	19	1K	17K	23	13A	10	8	9	7	12	
December	4	3	19	2	24	20	23	15	14A	31A	12	6	22	30*	17*	

Notes: If any of the selected quietest days were not truly quiet, they have been identified: with an A if the daily Ap index is > 6; or with a K if either one Kp index $\ge 3_0$ or two Kp indices $\ge 3_1$ occurred during the day.

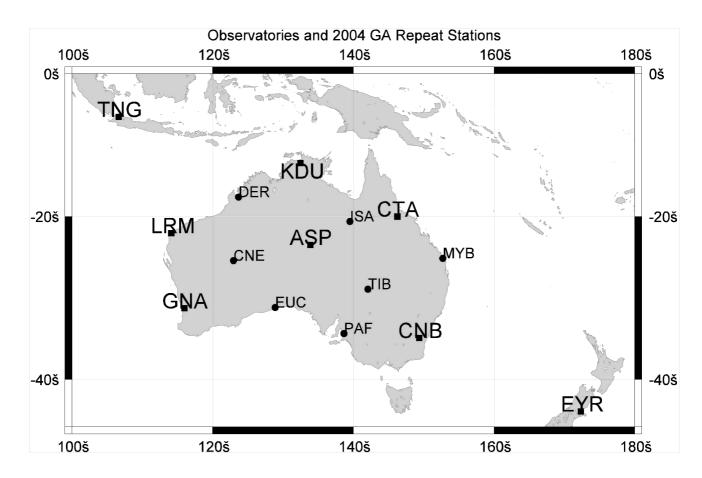
If any of the 5 most disturbed days have an index Ap < 20 they are identified with an *.

International Quiet and Disturbed Day information was supplied by the International Service of Geomagnetic Indices (ISGI), International Union of Geodesy and Geophysics (IUGG), Association of Geomagnetism and Aeronomy (IAGA), edited by Institut für Geophysik, Göttingen, Germany.

REPEAT STATION NETWORK

GA maintains a network of fifteen repeat stations throughout mainland Australia, its offshore islands, and the south-west Pacific region. The repeat stations are usually occupied at intervals of approximately two years to determine the secular variation of the magnetic field. During each three to four day repeat station occupation, four components of the magnetic field are monitored continuously with a portable on-site 3-axis fluxgate variometer and a total field magnetometer.

During 2004 a Narod three-axis ring-core fluxgate magnetometer was used to monitor variations in three orthogonal components of the magnetic field. The digital output from this magnetometer was recorded as 1-second and 1-minute means with a portable industrial computer running an MS-DOS data acquisition system. A GEM Systems GSM90 Overhauser-effect total field magnetometer was used to monitor the total magnetic intensity. The digital output from the total field magnetometer was recorded at a sampling interval of 10 seconds.


The magnetometers, acquisition and recording system were all powered by either two 12V DC batteries and solar panels or 240V AC mains power, depending on the location. Preliminary data processing and analysis was carried out onsite on a lap-top computer.

The variometer recordings were calibrated to observatory standard with a campaign of absolute magnetic observations made during each station occupation. Usually from 24 to 30 sets of absolute observations were performed on each primary repeat station. Vector field differences between the primary and secondary station at each site were also measured. Azimuths to prominent features from both primary and secondary stations were checked and total field gradient surveys around each station were undertaken.

The absolute instruments used on the repeat station surveys during 2004 were Elsec 810 DIM, no. 220 with Zeiss 020B theodolite, no. 308887, and GEM Systems GSM90 no. 810881 with sensor no. 31960. The GSM90 was also used for total field surveys around each station.

The normal or quiet level of the magnetic field at each repeat station was determined by analysing the calibrated on-site variometer record with reference to the quiet level of the magnetic field derived from a three month period of suitable magnetic observatory data.

The average annual rate of change of the field over the time between station occupations was determined by first differences between the adopted normal field values at the repeat station and the adopted normal field value from the previous occupation of the station.

The distribution of permanent magnetic observatories and repeat stations occupied in 2004

Station Occupations

Seven repeat stations were re-occupied in April/May 2004: Maryborough (MYB), Mount Isa (ISA), Derby (DER), Carnegie (CNE), Eucla (EUC), Parafield (PAF) and Tibooburra (TIB). The map above shows the location of these repeat stations and the permanent magnetic observatories in the region.

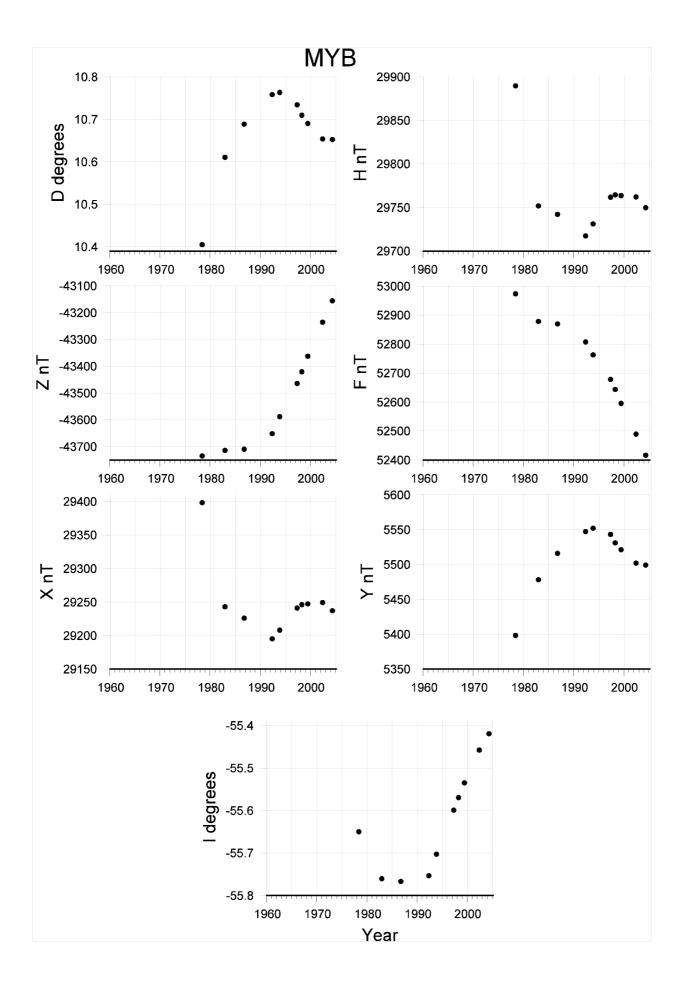
The adopted normal field values at the time of the 2004 occupations and the average secular variation over the interval between the two most recent occupations for each station are shown in the tables below. All available data from the repeat stations are plotted in the figures that follow.

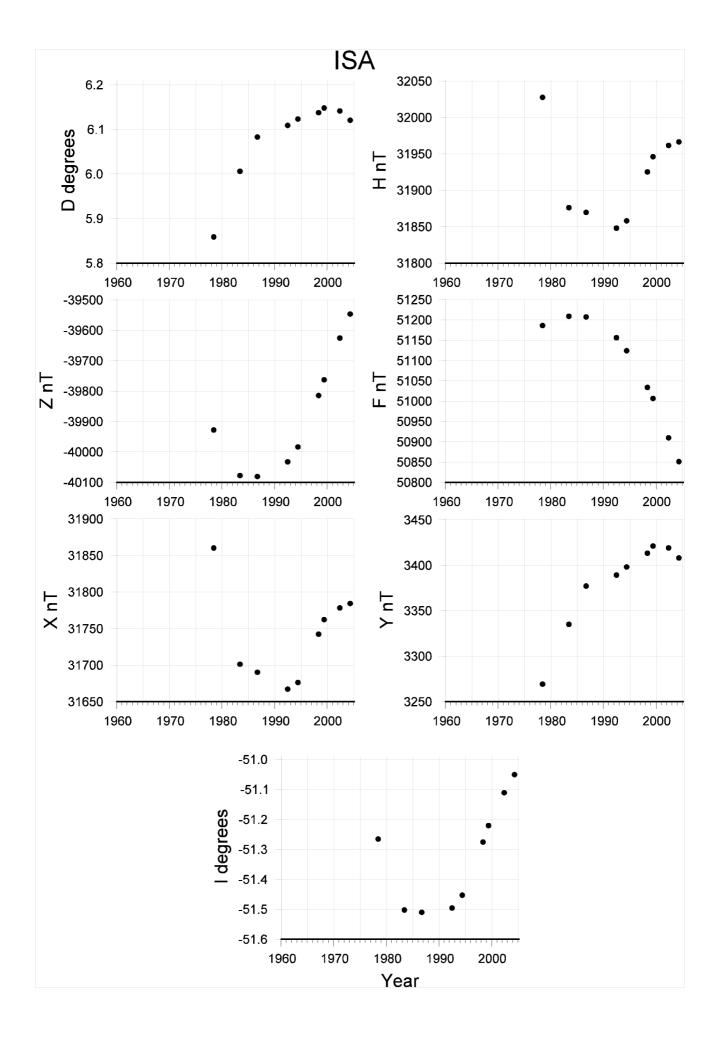
Adopted Main Field Values at Time of Station Occupations

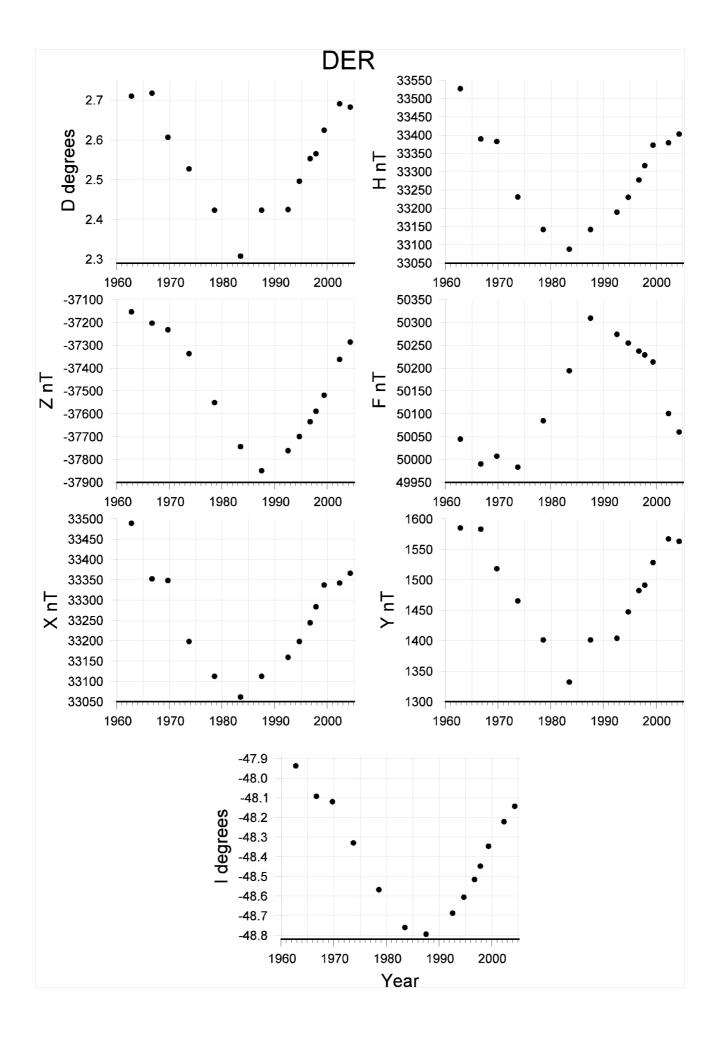
Station (site)	Occupation	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D	I
Maryborough (D)	2004 04 22	29237	5499	-43157	52417	29750	10° 39.1'	-55° 25.2'
Mount Isa (A)	2004 04 27	31784	3409	-39547	50851	31966	06° 07.3'	-51° 03.0'
Derby (E)	2004 05 04	33366	1563	-37287	50060	33403	02° 40.9'	-48° 08.7'
Carnegie (A)	2004 05 13	28109	1186	-47494	55202	28134	02° 24.9 '	-59° 21.5'
Eucla (D)	2004 05 17	23714	1926	-53274	58345	23792	04° 38.5 '	-65° 56.1'
Parafield (C)	2004 05 22	22831	3389	-54703	59373	23082	08° 26.6'	-67° 07.4'
Tibooburra (A)	2004 05 26	26675	4011	-49213	56121	26974	08° 33.0'	-61° 16.3'

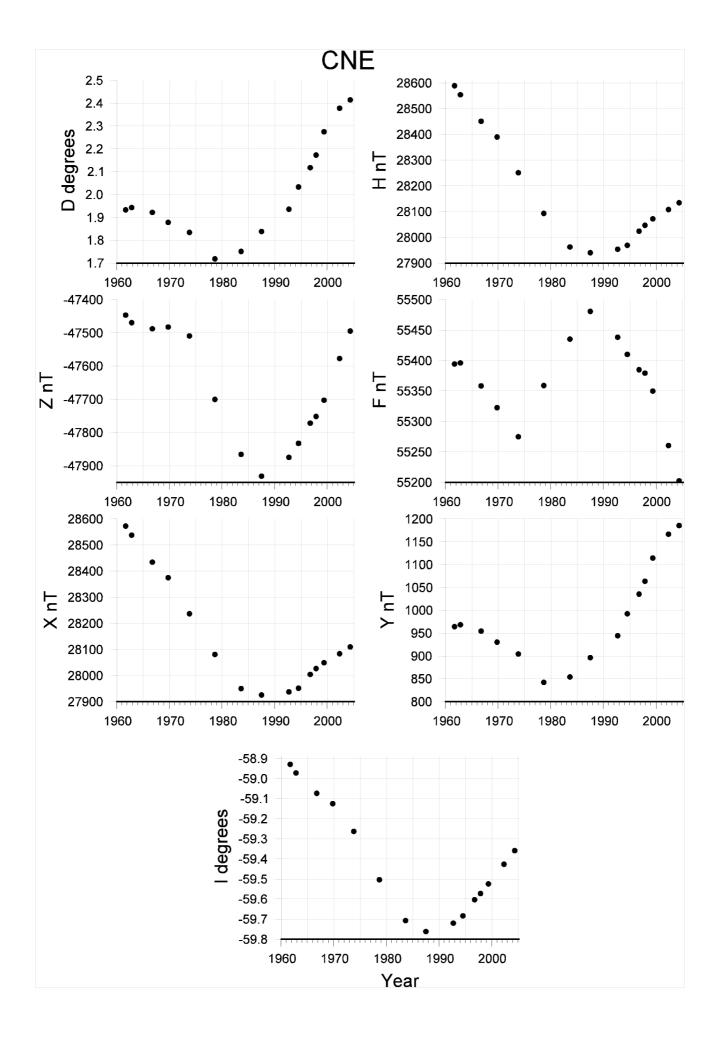
Average Secular Variation between two most recent Occupations

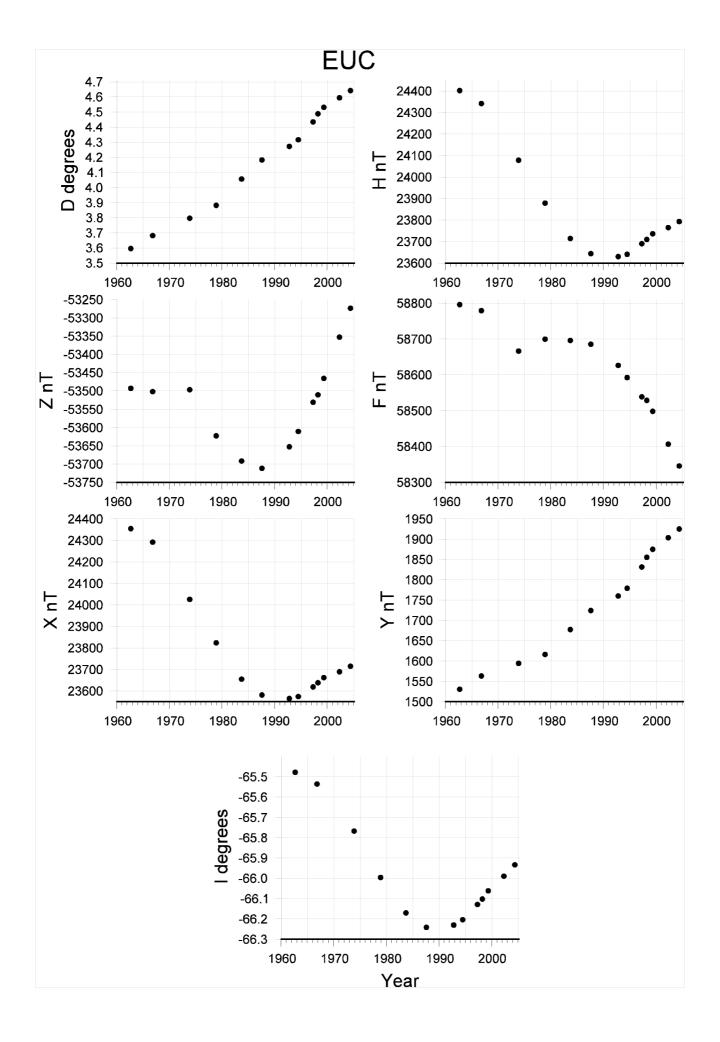
Station (site)	Previous occupation	ΔX (nT/yr)	ΔY (nT/yr)	ΔZ (nT/yr)	ΔF (nT/yr)	ΔH (nT/yr)	ΔD ('/yr)	ΔI ('/yr)
Maryborough (D)	2002 05 17	-6	-2	41	-37	-6	-0.1	1.2
Mount Isa (A)	2002 05 11	4	-5	41	-30	3	-0.6	1.9
Derby (E)	2002 05 04	12	-2	38	-20	12	-0.2	2.3
Carnegie (A)	2002 05 10	13	10	41	-28	14	1.1	2.0
Eucla (D)	2002 04 21	13	11	38	-30	13	1.4	1.7
Parafield (C)	2002 04 16	6	6	32	-27	7	0.7	1.1
Tibooburra (A)	2002 04 11	1	-2	38	-33	1	-0.2	1.2

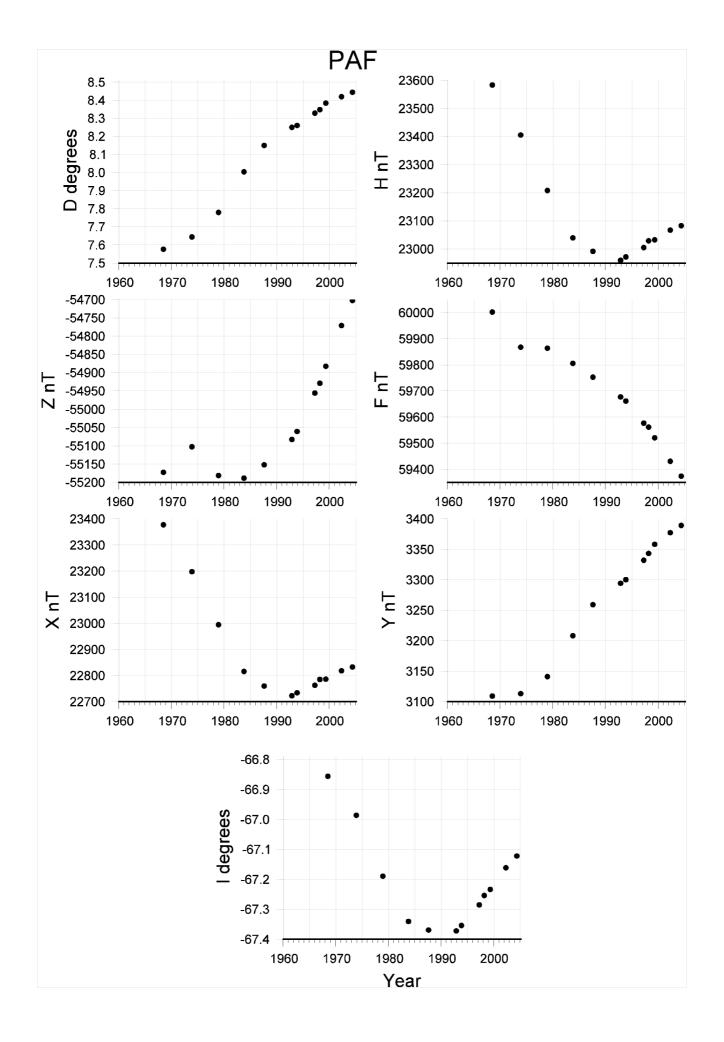

Distribution of Repeat Station data

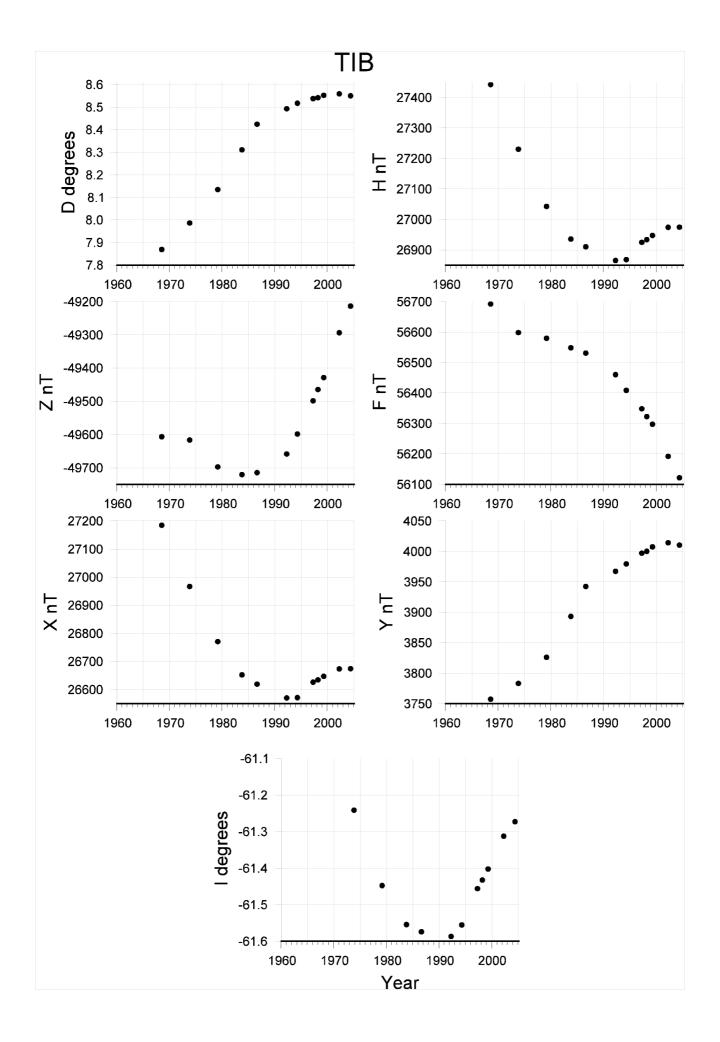

Australian Repeat Station data acquired over the 2001-2004 period were distributed to WDC-A, Boulder, USA and BGS, Edinburgh, UK on 10 Sep. 2004


Australian Geomagnetic Reference Field


The latest revision of the Australian Geomagnetic Reference Field was for epoch 2000.0 (AGRF00) that was released in 2000 (Lewis, 2000). It is considered the best available geomagnetic field model for direction-finding applications in the Australian region. Charts in each of the magnetic elements X, Y, Z, F, H, D and I from the AGRF00 model are in the *AGR* 2000. The next AGRF model to be developed will be for 2005.0.


Epoch charts over the region have been produced on a regular basis since 1944. An Australian Geomagnetic Reference Field model (AGRF) has been produced every five years since 1980. These were listed in the *Charts and Models* table that appeared in *AGRs* 1993-1997.





REFERENCES

- 'Australian Geomagnetism Report 1993', compiled by A.J. McEwin and P.A. Hopgood. Australian Geological Survey Organisation.
- 'Australian Geomagnetism Report 1994', compiled by P.A. Hopgood and A.J. McEwin. Australian Geological Survey Organisation.
- 'Australian Geomagnetism Report 1995' to 'Australian Geomagnetism Report 1998', compiled by P.A. Hopgood. *Australian Geological Survey Organisation*.
- Crosthwaite, P.G., 'Calibration of X, Y, Z, F type variometers' *Australian Geological Survey Organisation, Geomagnetism Note*, **1992/24**, 1992.
- Crosthwaite, P.G. 'Using F in X, Y, Z, F type variometers' Australian Geological Survey Organisation, Geomagnetism Note, 1994/16, 1994.
- Crosthwaite, P.G., 'Casey Geomagnetic Observatory Visit, 1998/99 Summer', *Australian Geological Survey Organisation, Geomagnetism Note* (in preparation).
- Hattingh, M., L. Loubser, D. Nagtegaal 'Computer K-index estimation by a new linear-phase, robust, non-linear smoothing method', *Geophys. J. Int.* **99**, 533-547. 1989.
- Hopgood, P.A. 'Australian Magnetic Observatories' Exploration Geophysics, 24, 79-82, 1993
- Lewis, A.M. 'The Geomagnetic Field in the Australian region Epoch 2000' (chart) *Australian Geological Survey Organisation, Canberra*, 2000.
- Lewis, Andrew and Bruce Sibson 'Alice Springs Maintenance Visit March 2004' Geoscience Australia, Geomagnetism Note 2004-10.
- Mayaud, P.N. 'Atlas of Indices K' IAGA Bulletin 21, 113pp., IUGG Publ. Office, Paris. 1967.
- McGregor, P.M. 'Australian Magnetic Observatories' *BMR Journal of Australian Geology and Geophysics*, **4**, 361-371. 1979
- Trigg, D.F. and R.L. Coles (editors). 'INTERMAGNET Technical Reference Manual 1994', 73pp. INTERMAGNET, 1994.

Geomagnetism Staff List 2004

Name	Classification	Responsibility
Peter A. Hopgood	GA Level 6	Project Manager
Peter G. Crosthwaite	GA Level 5	Digital acquisition, system and software development and maintenance; Kakadu and Gnangara observatories
Andrew M. Lewis	GA Level 5	Repeat Station Survey; Alice Springs and Learmonth observatories
Liejun Wang	GA Level 4	Data-base development; Canberra and Charters Towers observatories
Nick Bartzis	GA Level 2	Observatories
Bruce Sibson	GA Level 3	Technical support
Owen D. McConnel	GA Level 3	Technical support, Western Australia*

^{*} The Mundaring Geophysical Observatory was closed at the end of April 2000. Only one member of staff (ODM) remained with Geoscience Australia after that time. This officer provided technical support for the Gnangara and Learmonth magnetic observatories as well as the seismograph network in Western Australia.

Non-GA Observers/OICs

Warren Serone	ACRES (contracted by GA)	Alice Springs
Jack M. Millican	Contracted by GA	Charters Towers
Graham Steward	Learmonth Solar Observatory, IPS	Learmonth
Rory Lynch	Contracted by GA	Kakadu
Gerard (Hans) Van Reeken	Contracted by GA	Gnangara
Ray Hegarty	Technical Officer 2 (BOM & GA)	Mawson, 2004 observer
Glenn Roser	Technical Officer 2 (AAD & GA)	Mawson, 2005 observer
Henry Banon	Technical Officer 2 (AAD & GA)	Macquarie Island, 2003/04 observer
Spencer Redfern	Technical Officer 2 (AAD & GA)	Macquarie Island, 2004/05 observer
Mark Healy	Technical Officer 2 (AAD & GA)	Casey, 2004 observer
Chris Clarke	Technical Officer 2 (AAD & GA)	Casey, 2005 observer

End of Part 2